Name Mode Size
R 040000
data-raw 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
.lintr 100644 0 kb
.travis.yml 100644 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 1 kb
README.md 100644 3 kb
_pkgdown.yml 100644 1 kb
codecov.yml 100644 0 kb
sevenC.Rproj 100644 0 kb
README.md
# sevenC [![Travis build status](https://travis-ci.org/ibn-salem/sevenC.svg?branch=master)](https://travis-ci.org/ibn-salem/sevenC) [![Coverage status](https://codecov.io/gh/ibn-salem/sevenC/branch/master/graph/badge.svg)](https://codecov.io/github/ibn-salem/sevenC?branch=master) [![](https://img.shields.io/badge/release%20version-1.0.0-green.svg)](https://bioconductor.org/packages/sevenC) [![](https://img.shields.io/badge/devel%20version-1.1.2-blue.svg)](https://github.com/ibn-salem/sevenC) [![](https://img.shields.io/badge/download-390/total-blue.svg)](https://bioconductor.org/packages/stats/bioc/sevenC) [![](https://img.shields.io/badge/doi-10.18129/B9.bioc.sevenC-yellow.svg)](https://doi.org/10.18129/B9.bioc.sevenC) ## Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs Chromatin looping is an essential feature of eukaryotic genomes and can bring regulatory sequences, such as enhancers or transcription factor binding sites, in the close physical proximity of regulated target genes. Here, we provide sevenC, an R package that uses protein binding signals from ChIP-seq and sequence motif information to predict chromatin looping events. Cross-linking of proteins that bind close to loop anchors result in ChIP-seq signals at both anchor loci. These signals are used at CTCF motif pairs together with their distance and orientation to each other to predict whether they interact or not. The resulting chromatin loops might be used to associate enhancers or transcription factor binding sites (e.g., ChIP-seq peaks) to regulated target genes. A more detailed explanation of the sevenC method together with prediction performance analysis is available in the associated preprint: Ibn-Salem, J. & Andrade-Navarro, M. A. Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. bioRxiv 257584 (2018). https://doi.org/10.1101/257584 ## Intallation To install the *sevenC* package, start R and enter: ```R if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("sevenC") ``` Alternatively, the development version of *sevenC* can be installed from GitHub: ```R #install.packages("devtools") devtools::install_github("ibn-salem/sevenC") ``` ## Basic usage example Here we show how to use *sevenC* to predict chromatin looping interactions among CTCF motif locations on chromosome 22. As input, we only use CTCF motif locations and a single bigWig file from a STAT1 ChIP-seq experiment in human GM12878 cells. #### Get motif pairs ```R library(sevenC) # load provided CTCF motifs in human genome motifs <- motif.hg19.CTCF.chr22 # get motifs pairs gi <- prepareCisPairs(motifs, maxDist = 10^6) ``` #### Add ChIP-seq data and compute correaltion ```R # use example ChIP-seq bigWig file bigWigFile <- system.file("extdata", "GM12878_Stat1.chr22_1-30000000.bigWig", package = "sevenC") # add ChIP-seq coverage and compute correaltion at motif pairs gi <- addCor(gi, bigWigFile) ``` #### Predict loops ```R # predict looping interactions among all motif pairs loops <- predLoops(gi) ``` For more detailed usage instructions, see the package [vignette](https://ibn-salem.github.io/sevenC/articles/sevenC.html) or [reference documentation](https://ibn-salem.github.io/sevenC/reference/index.html). ## Issues Please report issues here: https://github.com/ibn-salem/sevenC/issues