Name Mode Size
R 040000
data 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
NAMESPACE 100644 1 kb
NEWS 100644 1 kb
README.md 100644 1 kb
README.md
# scAnnotatR The `scAnnotatR` package automatically classifies cells in scRNA-seq datasets. It is simple to use with a clear infrastructure to easily add additional cell type classification models. `scAnnotatR` support both `Seurat` and `SingleCellExperiment` objects as input. ## Installation You can install the latest version directly from GitHub using the `devtools` package: ```r # install devtools if needed if (!require(devtools)) { install.packages("devtools") } if (!require(scAnnotatR)) { install_github("grisslab/scAnnotatR") } ``` ## Help The complete usage is shown in the vignettes: * [Basic classification of cells](vignettes/classifying-cells.Rmd) * [Basic training of a new cell classification model](vignettes/training-basic-model.Rmd) * [Training of child-celltype models](vignettes/training-child-model.Rmd) For more questions / feedback please simply post an [Issue](https://github.com/grisslab/scAnnotatR/issues/new). ## Citation If you used scAnnotatR in your research, we would be grateful if you could cite the following manuscript: Nguyen, V., Griss, J. scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data. BMC Bioinformatics 23, 44 (2022). https://doi.org/10.1186/s12859-022-04574-5