Name Mode Size
.github 040000
R 040000
data 040000
inst 040000
man-roxygen 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 2 kb
Makefile 100644 0 kb
NAMESPACE 100644 2 kb
README.md 100644 2 kb
codecov.yml 100644 0 kb
configure.ac 100644 0 kb
environment.yml 100644 0 kb
README.md
# martini ![R-CMD-check-bioc](https://github.com/hclimente/martini/workflows/R-CMD-check-bioc/badge.svg) [![codecov](https://codecov.io/gh/hclimente/martini/branch/master/graph/badge.svg)](https://codecov.io/gh/hclimente/martini) [![BioC](https://bioconductor.org/shields/years-in-bioc/martini.svg)](https://bioconductor.org/packages/devel/bioc/html/martini.html) `martini` is an R package to perform GWAS experiment that considers prior biological knowledge. This knowledge is modeled as a network of SNPs, were edges represent functional relationships between them (e.g. belonging to the same gene). Then, it looks for regions of the network associated with the phenotype using [SConES](https://academic.oup.com/bioinformatics/article/29/13/i171/198210) or [SigMod](https://academic.oup.com/bioinformatics/article/33/10/1536/2874362). # Installation Install `martini` like any other Bioconductor package: ``` r install.packages("BiocManager") BiocManager::install("martini") ``` # Usage Running `martini` is a three step process: ``` r library(martini) # 1. Read GWAS data with read.pedfile (or load the example :) ) data(minigwas) # 2. Create the SNP network: GS (structural information), GM (GS + gene # annotation information) or GI (GM + protein-protein interaction information) gs <- get_GS_network(minigwas) # 3. Run SConES, finding the best parameters by cross-validation res <- scones.cv(minigwas, gs) # the output is an igraph subnetwork containing the selected SNPs res # IGRAPH d9128a0 UNW- 12 10 -- # + attr: name (v/c), chr (v/n), pos (v/n), weight (e/n) # + edges from d9128a0 (vertex names): # [1] 1A1--1A2 1A2--1A3 1A3--1A4 1A4--1A5 1A5--1A6 2C1--2C2 2C2--2C3 2C3--2C4 2C4--2C5 2C5--2C6 ``` Please, refer to the vignettes for more detailed usage examples. `martini` results can be further examined using the [blur](https://github.com/hclimente/blur) package. # Citation A more detailed description can be found in [the pre-print](https://www.biorxiv.org/content/10.1101/2021.01.25.428047v1). If you use `martini` in your work, please cite us: ``` @article{martini2021, title = {martini: an {R} package for genome-wide association studies using {SNP} networks}, author = {Climente-González, Héctor and Azencott, Chloé-Agathe}, url = {http://biorxiv.org/lookup/doi/10.1101/2021.01.25.428047}, journal = {bioRxiv}, month = jan, year = {2021}, doi = {10.1101/2021.01.25.428047} } ```