Name Mode Size
R 040000
data 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
.travis.yml 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 0 kb
NAMESPACE 100644 1 kb
README.md 100644 2 kb
appveyor.yml 100644 1 kb
configure.ac 100644 0 kb
README.md
# martini [![Build Status](https://travis-ci.org/hclimente/martini.svg?branch=master)](https://travis-ci.org/hclimente/martini) [![Build status](https://ci.appveyor.com/api/projects/status/ehnhhg2n5cs7pkk6?svg=true)](https://ci.appveyor.com/project/hclimente/martini) [![codecov](https://codecov.io/gh/hclimente/martini/branch/master/graph/badge.svg)](https://codecov.io/gh/hclimente/martini) [![BioC](https://bioconductor.org/shields/years-in-bioc/martini.svg)](https://bioconductor.org/packages/devel/bioc/html/martini.html) `martini` is an R package to perform GWAS experiment that considers prior biological knowledge. This knowledge is modeled as a network of SNPs, were edges represent functional relationships between them (e.g. belonging to the same gene). Then, it looks for regions of the network associated with the phenotype using [SConES](https://academic.oup.com/bioinformatics/article/29/13/i171/198210). # Installation Install `martini` like any Bioconductor package: ``` r install.packages("BiocManager") BiocManager::install("martini") ``` # Usage Running `martini` is a three step process: ``` r library(martini) # 1. Read GWAS data with read.pedfile (or load the example :) ) data(minigwas) # 2. Create the SNP network: GS (structural information), GM (GS + gene # annotation information) or GI (GM + protein-protein interaction information) gs <- get_GS_network(minigwas) # 3. Find connected, explanatory SNPs (cones) cones <- search_cones(minigwas, gs) # cones$selected informs about whether the SNP is selected as cones or not head(cones) # snp chr cm pos allele.1 allele.2 c selected module # 3 1A1 1 0 10 A G 96.15385 TRUE 1 # 4 1A2 1 0 20 A G 96.15385 TRUE 1 # 5 1A3 1 0 30 A G 96.15385 TRUE 1 # 6 1A4 1 0 40 A G 96.15385 TRUE 1 # 7 1A5 1 0 50 A G 96.15385 TRUE 1 # 8 1A6 1 0 60 A G 96.15385 TRUE 1 ``` Please, refer to the vignettes for more detailed usage examples. `martini` results can be further examined using the [blur](https://github.com/hclimente/blur) package.