... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
title: "Dietary text annotation" |
3 | 3 |
author: |
4 | 4 |
- name: Pol Castellano-Escuder |
5 |
- affiliation: University of Barcelona, Spain. |
|
5 |
+ affiliation: Duke University |
|
6 | 6 |
email: polcaes@gmail.com |
7 | 7 |
date: "`r BiocStyle::doc_date()`" |
8 | 8 |
output: |
... | ... |
@@ -19,7 +19,7 @@ link-citations: true |
19 | 19 |
|
20 | 20 |
**Compiled date**: `r Sys.Date()` |
21 | 21 |
|
22 |
-**Last edited**: 2021-14-05 |
|
22 |
+**Last edited**: 2022-01-12 |
|
23 | 23 |
|
24 | 24 |
**License**: `r packageDescription("fobitools")[["License"]]` |
25 | 25 |
|
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
title: "Use case: LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice" |
3 | 3 |
author: |
4 | 4 |
- name: Pol Castellano-Escuder |
5 |
- affiliation: University of Barcelona, Spain. |
|
5 |
+ affiliation: Duke University |
|
6 | 6 |
email: polcaes@gmail.com |
7 | 7 |
date: "`r BiocStyle::doc_date()`" |
8 | 8 |
output: |
... | ... |
@@ -19,7 +19,7 @@ link-citations: true |
19 | 19 |
|
20 | 20 |
**Compiled date**: `r Sys.Date()` |
21 | 21 |
|
22 |
-**Last edited**: 2021-27-05 |
|
22 |
+**Last edited**: 2022-01-12 |
|
23 | 23 |
|
24 | 24 |
**License**: `r packageDescription("fobitools")[["License"]]` |
25 | 25 |
|
... | ... |
@@ -158,12 +158,12 @@ pdata <- colData(data_negative_mode) %>% # or "data_positive_mode". They are equ |
158 | 158 |
|
159 | 159 |
`POMA` provides a structured, reproducible and easy-to-use workflow for the visualization, preprocessing, exploration, and statistical analysis of metabolomics and proteomics data. The main aim of this package is to enable a flexible data cleaning and statistical analysis processes in one comprehensible and user-friendly R package. `POMA` uses the standardized `MSnbase` data structures, to achieve the maximum flexibility and reproducibility and makes `POMA` compatible with other Bioconductor packages [@POMA]. |
160 | 160 |
|
161 |
-## Create a `MSnbase::MSnSet` object |
|
161 |
+## Create a `SummarizedExperiment` object |
|
162 | 162 |
|
163 |
-First, we create a `MSnSet` object that integrates both metadata and features in the same data structure. |
|
163 |
+First, we create a `SummarizedExperiment` object that integrates both metadata and features in the same data structure. |
|
164 | 164 |
|
165 | 165 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
166 |
-data_msnset <- PomaMSnSetClass(target = pdata, features = t(features)) |
|
166 |
+data_sumexp <- PomaSummarizedExperiment(target = pdata, features = t(features)) |
|
167 | 167 |
``` |
168 | 168 |
|
169 | 169 |
## Preprocessing |
... | ... |
@@ -171,7 +171,7 @@ data_msnset <- PomaMSnSetClass(target = pdata, features = t(features)) |
171 | 171 |
Second, we perform the preprocessing step. This step includes the missing value imputation unsing the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data. |
172 | 172 |
|
173 | 173 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
174 |
-data_preprocessed <- data_msnset %>% |
|
174 |
+data_preprocessed <- data_sumexp %>% |
|
175 | 175 |
PomaImpute(ZerosAsNA = TRUE, cutoff = 20, method = "knn") %>% |
176 | 176 |
PomaNorm(method = "log_pareto") %>% |
177 | 177 |
PomaOutliers(coef = 3) |
... | ... |
@@ -184,7 +184,8 @@ We use a limma model [@limma] to identify those most significant metabolites bet |
184 | 184 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
185 | 185 |
limma_res <- data_preprocessed %>% |
186 | 186 |
PomaLimma(contrast = "Baseline-Cranberry", adjust = "fdr") %>% |
187 |
- tibble::rownames_to_column("PubChemCID") |
|
187 |
+ dplyr::rename(PubChemCID = feature) %>% |
|
188 |
+ dplyr::mutate(PubChemCID = gsub("X", "", PubChemCID)) |
|
188 | 189 |
|
189 | 190 |
# show the first 10 features |
190 | 191 |
limma_res %>% |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
title: "Use case: Amino Acid Metabolites of Dietary Salt Effects on Blood Pressure in Human Urine" |
3 | 3 |
author: |
4 | 4 |
- name: Pol Castellano-Escuder |
5 |
- affiliation: University of Barcelona, Spain. |
|
5 |
+ affiliation: Duke University |
|
6 | 6 |
email: polcaes@gmail.com |
7 | 7 |
date: "`r BiocStyle::doc_date()`" |
8 | 8 |
output: |
... | ... |
@@ -19,7 +19,7 @@ link-citations: true |
19 | 19 |
|
20 | 20 |
**Compiled date**: `r Sys.Date()` |
21 | 21 |
|
22 |
-**Last edited**: 2021-27-05 |
|
22 |
+**Last edited**: 2022-01-12 |
|
23 | 23 |
|
24 | 24 |
**License**: `r packageDescription("fobitools")[["License"]]` |
25 | 25 |
|
... | ... |
@@ -105,20 +105,20 @@ pdata <- colData(data) %>% |
105 | 105 |
|
106 | 106 |
`POMA` provides a structured, reproducible and easy-to-use workflow for the visualization, preprocessing, exploration, and statistical analysis of metabolomics and proteomics data. The main aim of this package is to enable a flexible data cleaning and statistical analysis processes in one comprehensible and user-friendly R package. `POMA` uses the standardized `MSnbase` data structures, to achieve the maximum flexibility and reproducibility and makes `POMA` compatible with other Bioconductor packages [@POMA]. |
107 | 107 |
|
108 |
-## Create a `MSnbase::MSnSet` object |
|
108 |
+## Create a `SummarizedExperiment` object |
|
109 | 109 |
|
110 |
-First, we create a `MSnSet` object that integrates both metadata and features in the same data structure. |
|
110 |
+First, we create a `SummarizedExperiment` object that integrates both metadata and features in the same data structure. |
|
111 | 111 |
|
112 | 112 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
113 |
-data_msnset <- PomaMSnSetClass(target = pdata, features = t(features)) |
|
113 |
+data_sumexp <- PomaSummarizedExperiment(target = pdata, features = t(features)) |
|
114 | 114 |
``` |
115 | 115 |
|
116 | 116 |
## Preprocessing |
117 | 117 |
|
118 |
-Second, we perform the preprocessing step. This step includes the missing value imputation unsing the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data. |
|
118 |
+Second, we perform the preprocessing step. This step includes the missing value imputation using the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data. |
|
119 | 119 |
|
120 | 120 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
121 |
-data_preprocessed <- data_msnset %>% |
|
121 |
+data_preprocessed <- data_sumexp %>% |
|
122 | 122 |
PomaImpute(ZerosAsNA = TRUE, cutoff = 20, method = "knn") %>% |
123 | 123 |
PomaNorm(method = "log_pareto") %>% |
124 | 124 |
PomaOutliers(coef = 3) |
... | ... |
@@ -131,7 +131,7 @@ We use a limma model [@limma] to identify those most significant metabolites bet |
131 | 131 |
```{r, warning = FALSE, message = FALSE, comment = FALSE} |
132 | 132 |
limma_res <- data_preprocessed %>% |
133 | 133 |
PomaLimma(contrast = "A-B", adjust = "fdr") %>% |
134 |
- tibble::rownames_to_column("ID") |
|
134 |
+ dplyr::rename(ID = feature) |
|
135 | 135 |
|
136 | 136 |
# show the first 10 features |
137 | 137 |
limma_res %>% |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
title: "Simple food over representation analysis (ORA)" |
3 | 3 |
author: |
4 | 4 |
- name: Pol Castellano-Escuder |
5 |
- affiliation: University of Barcelona, Spain. |
|
5 |
+ affiliation: Duke University |
|
6 | 6 |
email: polcaes@gmail.com |
7 | 7 |
date: "`r BiocStyle::doc_date()`" |
8 | 8 |
output: |
... | ... |
@@ -18,7 +18,7 @@ link-citations: true |
18 | 18 |
|
19 | 19 |
**Compiled date**: `r Sys.Date()` |
20 | 20 |
|
21 |
-**Last edited**: 2021-20-07 |
|
21 |
+**Last edited**: 2022-01-12 |
|
22 | 22 |
|
23 | 23 |
**License**: `r packageDescription("fobitools")[["License"]]` |
24 | 24 |
|