Browse code

bump version and vignettes fixed

Pol Castellano Escuder authored on 12/01/2022 17:42:19
Showing 6 changed files

... ...
@@ -1,6 +1,6 @@
1 1
 Package: fobitools
2 2
 Title: Tools For Manipulating FOBI Ontology
3
-Version: 1.3.0
3
+Version: 1.3.2
4 4
 Authors@R: 
5 5
     c(person(given = "Pol",
6 6
              family = "Castellano-Escuder",
... ...
@@ -1,4 +1,4 @@
1
-## fobitools 1.3.1
1
+## fobitools 1.3.2
2 2
 
3 3
 * Fix bugs in vignettes
4 4
 
... ...
@@ -2,7 +2,7 @@
2 2
 title: "Dietary text annotation"
3 3
 author: 
4 4
 - name: Pol Castellano-Escuder
5
-  affiliation: University of Barcelona, Spain.
5
+  affiliation: Duke University
6 6
   email: polcaes@gmail.com
7 7
 date: "`r BiocStyle::doc_date()`"
8 8
 output: 
... ...
@@ -19,7 +19,7 @@ link-citations: true
19 19
 
20 20
 **Compiled date**: `r Sys.Date()`
21 21
 
22
-**Last edited**: 2021-14-05
22
+**Last edited**: 2022-01-12
23 23
 
24 24
 **License**: `r packageDescription("fobitools")[["License"]]`
25 25
 
... ...
@@ -2,7 +2,7 @@
2 2
 title: "Use case: LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice"
3 3
 author: 
4 4
 - name: Pol Castellano-Escuder
5
-  affiliation: University of Barcelona, Spain.
5
+  affiliation: Duke University
6 6
   email: polcaes@gmail.com
7 7
 date: "`r BiocStyle::doc_date()`"
8 8
 output: 
... ...
@@ -19,7 +19,7 @@ link-citations: true
19 19
 
20 20
 **Compiled date**: `r Sys.Date()`
21 21
 
22
-**Last edited**: 2021-27-05
22
+**Last edited**: 2022-01-12
23 23
 
24 24
 **License**: `r packageDescription("fobitools")[["License"]]`
25 25
 
... ...
@@ -158,12 +158,12 @@ pdata <- colData(data_negative_mode) %>% # or "data_positive_mode". They are equ
158 158
 
159 159
 `POMA` provides a structured, reproducible and easy-to-use workflow for the visualization, preprocessing, exploration, and statistical analysis of metabolomics and proteomics data. The main aim of this package is to enable a flexible data cleaning and statistical analysis processes in one comprehensible and user-friendly R package. `POMA` uses the standardized `MSnbase` data structures, to achieve the maximum flexibility and reproducibility and makes `POMA` compatible with other Bioconductor packages [@POMA].
160 160
 
161
-## Create a `MSnbase::MSnSet` object
161
+## Create a `SummarizedExperiment` object
162 162
 
163
-First, we create a `MSnSet` object that integrates both metadata and features in the same data structure.
163
+First, we create a `SummarizedExperiment` object that integrates both metadata and features in the same data structure.
164 164
 
165 165
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
166
-data_msnset <- PomaMSnSetClass(target = pdata, features = t(features))
166
+data_sumexp <- PomaSummarizedExperiment(target = pdata, features = t(features))
167 167
 ```
168 168
 
169 169
 ## Preprocessing
... ...
@@ -171,7 +171,7 @@ data_msnset <- PomaMSnSetClass(target = pdata, features = t(features))
171 171
 Second, we perform the preprocessing step. This step includes the missing value imputation unsing the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data.
172 172
 
173 173
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
174
-data_preprocessed <- data_msnset %>%
174
+data_preprocessed <- data_sumexp %>%
175 175
   PomaImpute(ZerosAsNA = TRUE, cutoff = 20, method = "knn") %>%
176 176
   PomaNorm(method = "log_pareto") %>%
177 177
   PomaOutliers(coef = 3)
... ...
@@ -184,7 +184,8 @@ We use a limma model [@limma] to identify those most significant metabolites bet
184 184
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
185 185
 limma_res <- data_preprocessed %>%
186 186
   PomaLimma(contrast = "Baseline-Cranberry", adjust = "fdr") %>%
187
-  tibble::rownames_to_column("PubChemCID")
187
+  dplyr::rename(PubChemCID = feature) %>% 
188
+  dplyr::mutate(PubChemCID = gsub("X", "", PubChemCID))
188 189
 
189 190
 # show the first 10 features
190 191
 limma_res %>%
... ...
@@ -2,7 +2,7 @@
2 2
 title: "Use case: Amino Acid Metabolites of Dietary Salt Effects on Blood Pressure in Human Urine"
3 3
 author: 
4 4
 - name: Pol Castellano-Escuder
5
-  affiliation: University of Barcelona, Spain.
5
+  affiliation: Duke University
6 6
   email: polcaes@gmail.com
7 7
 date: "`r BiocStyle::doc_date()`"
8 8
 output: 
... ...
@@ -19,7 +19,7 @@ link-citations: true
19 19
 
20 20
 **Compiled date**: `r Sys.Date()`
21 21
 
22
-**Last edited**: 2021-27-05
22
+**Last edited**: 2022-01-12
23 23
 
24 24
 **License**: `r packageDescription("fobitools")[["License"]]`
25 25
 
... ...
@@ -105,20 +105,20 @@ pdata <- colData(data) %>%
105 105
 
106 106
 `POMA` provides a structured, reproducible and easy-to-use workflow for the visualization, preprocessing, exploration, and statistical analysis of metabolomics and proteomics data. The main aim of this package is to enable a flexible data cleaning and statistical analysis processes in one comprehensible and user-friendly R package. `POMA` uses the standardized `MSnbase` data structures, to achieve the maximum flexibility and reproducibility and makes `POMA` compatible with other Bioconductor packages [@POMA].
107 107
 
108
-## Create a `MSnbase::MSnSet` object
108
+## Create a `SummarizedExperiment` object
109 109
 
110
-First, we create a `MSnSet` object that integrates both metadata and features in the same data structure.
110
+First, we create a `SummarizedExperiment` object that integrates both metadata and features in the same data structure.
111 111
 
112 112
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
113
-data_msnset <- PomaMSnSetClass(target = pdata, features = t(features))
113
+data_sumexp <- PomaSummarizedExperiment(target = pdata, features = t(features))
114 114
 ```
115 115
 
116 116
 ## Preprocessing
117 117
 
118
-Second, we perform the preprocessing step. This step includes the missing value imputation unsing the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data.
118
+Second, we perform the preprocessing step. This step includes the missing value imputation using the $k$-NN algorithm, log Pareto normalization (transformation and scaling) and outlier detection and cleaning. Once these steps are completed, we can proceed to the statistical analysis of these data.
119 119
 
120 120
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
121
-data_preprocessed <- data_msnset %>%
121
+data_preprocessed <- data_sumexp %>%
122 122
   PomaImpute(ZerosAsNA = TRUE, cutoff = 20, method = "knn") %>%
123 123
   PomaNorm(method = "log_pareto") %>%
124 124
   PomaOutliers(coef = 3)
... ...
@@ -131,7 +131,7 @@ We use a limma model [@limma] to identify those most significant metabolites bet
131 131
 ```{r, warning = FALSE, message = FALSE, comment = FALSE}
132 132
 limma_res <- data_preprocessed %>%
133 133
   PomaLimma(contrast = "A-B", adjust = "fdr") %>%
134
-  tibble::rownames_to_column("ID")
134
+  dplyr::rename(ID = feature)
135 135
 
136 136
 # show the first 10 features
137 137
 limma_res %>%
... ...
@@ -2,7 +2,7 @@
2 2
 title: "Simple food over representation analysis (ORA)"
3 3
 author: 
4 4
 - name: Pol Castellano-Escuder
5
-  affiliation: University of Barcelona, Spain.
5
+  affiliation: Duke University
6 6
   email: polcaes@gmail.com
7 7
 date: "`r BiocStyle::doc_date()`"
8 8
 output: 
... ...
@@ -18,7 +18,7 @@ link-citations: true
18 18
 
19 19
 **Compiled date**: `r Sys.Date()`
20 20
 
21
-**Last edited**: 2021-20-07
21
+**Last edited**: 2022-01-12
22 22
 
23 23
 **License**: `r packageDescription("fobitools")[["License"]]`
24 24