Name Mode Size
.github 040000
R 040000
data 040000
docs 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100755 0 kb
.gitignore 100755 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100755 1 kb
NEWS.md 100755 1 kb
README-example-1.png 100755 69 kb
README.md 100755 2 kb
_pkgdown.yml 100755 0 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # dcanr: Differential co-expression/association network analysis [![R-CMD-check](https://github.com/DavisLaboratory/dcanr/workflows/R-CMD-check-bioc/badge.svg)](https://github.com/DavisLaboratory/dcanr/actions) [![codecov](https://codecov.io/gh/DavisLaboratory/dcanr/branch/master/graph/badge.svg?token=93RXZRHIBJ)](https://codecov.io/gh/DavisLaboratory/dcanr) [![BioC status](https://bioconductor.org/shields/years-in-bioc/dcanr.svg)](https://bioconductor.org/packages/dcanr/) Methods and an evaluation framework for the inference of differential co-expression/association networks. ## Installation Download the package from Bioconductor ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("dcanr") ``` Or install the development version of the package from Github. ``` r BiocManager::install("DavisLaboratory/dcanr") ``` Load the installed package into an R session. ``` r library(dcanr) ``` ## Example This example shows how a differential network can be derived. Simulated data within the package is used. ``` r #load simulated data data(sim102) #get expression data and conditions for 'UME6' knock-down simdata <- getSimData(sim102, cond.name = 'UME6', full = FALSE) emat <- simdata$emat ume6_kd <- simdata$condition #apply the z-score method with Spearman correlations z_scores <- dcScore(emat, ume6_kd, dc.method = 'zscore', cor.method = 'spearman') #perform a statistical test: the z-test is selected automatically raw_p <- dcTest(z_scores, emat, ume6_kd) #adjust p-values (raw p-values from dcTest should NOT be modified) adj_p <- dcAdjust(raw_p, f = p.adjust, method = 'fdr') #get the differential network dcnet <- dcNetwork(z_scores, adj_p) #> Warning in dcNetwork(z_scores, adj_p): default thresholds being selected plot(dcnet, vertex.label = '', main = 'Differential co-expression network') ``` <img src="https://github.com/DavisLaboratory/dcanr/blob/master/README-example-1.png?raw=true" alt="DC Network"/> Edges in the differential network are coloured based on the score (negative to positive represented from purple to green respectively).