Name Mode Size
.github 040000
R 040000
data-raw 040000
data 040000
inst 040000
man 040000
pkgdown 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 3 kb
LICENSE 100644 1 kb
NAMESPACE 100644 3 kb
NEWS 100644 2 kb
README.Rmd 100644 5 kb
README.md 100644 8 kb
codecov.yml 100644 0 kb
README.md
# clustifyr <!-- badges: start --> [![R-CMD-check-bioc](https://github.com/rnabioco/clustifyr/actions/workflows/check-bioc.yml/badge.svg)](https://github.com/rnabioco/clustifyr/actions/workflows/check-bioc.yml) [![Codecov test coverage](https://codecov.io/gh/rnabioco/clustifyr/branch/devel/graph/badge.svg)](https://app.codecov.io/gh/rnabioco/clustifyr?branch=devel) [![platforms](https://bioconductor.org/shields/availability/release/clustifyr.svg)](https://bioconductor.org/packages/release/bioc/html/clustifyr.html) [![bioc](https://bioconductor.org/shields/years-in-bioc/clustifyr.svg)](https://bioconductor.org/packages/release/bioc/html/clustifyr.html) [![\#downloads](https://img.shields.io/badge/%23%20downloads-11608-brightgreen)](https://bioconductor.org/packages/stats/bioc/clustifyr/clustifyr_stats.tab) <!-- badges: end --> clustifyr classifies cells and clusters in single-cell RNA sequencing experiments using reference bulk RNA-seq data sets, sorted microarray expression data, single-cell gene signatures, or lists of marker genes. ## Installation Install the Bioconductor version with: ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("clustifyr") ``` Install the development version with: ``` r BiocManager::install("rnabioco/clustifyr") ``` ## Example usage In this example we use the following built-in input data: - an expression matrix of single cell RNA-seq data (`pbmc_matrix_small`) - a metadata data.frame (`pbmc_meta`), with cluster information stored (`"classified"`) - a vector of variable genes (`pbmc_vargenes`) - a matrix of mean normalized scRNA-seq UMI counts by cell type (`cbmc_ref`) We then calculate correlation coefficients and plot them on a pre-calculated projection (stored in `pbmc_meta`). ``` r library(clustifyr) # calculate correlation res <- clustify( input = pbmc_matrix_small, metadata = pbmc_meta$classified, ref_mat = cbmc_ref, query_genes = pbmc_vargenes ) # print assignments cor_to_call(res) #> # A tibble: 9 × 3 #> # Groups: cluster [9] #> cluster type r #> <chr> <chr> <dbl> #> 1 B B 0.909 #> 2 CD14+ Mono CD14+ Mono 0.915 #> 3 FCGR3A+ Mono CD16+ Mono 0.929 #> 4 Memory CD4 T CD4 T 0.861 #> 5 Naive CD4 T CD4 T 0.889 #> 6 DC DC 0.849 #> 7 Platelet Mk 0.732 #> 8 CD8 T NK 0.826 #> 9 NK NK 0.894 # plot assignments on a projection plot_best_call( cor_mat = res, metadata = pbmc_meta, cluster_col = "classified" ) ``` ![](man/figures/readme_example-1.png)<!-- --> `clustify()` can take a clustered `SingleCellExperiment` or `seurat` object (both v2 and v3) and assign identities. ``` r # for SingleCellExperiment sce_small <- sce_pbmc() clustify( input = sce_small, # an SCE object ref_mat = cbmc_ref, # matrix of RNA-seq expression data for each cell type cluster_col = "cell_type", # name of column in meta.data containing cell clusters obj_out = TRUE # output SCE object with cell type inserted as "type" column ) #> class: SingleCellExperiment #> dim: 2000 2638 #> metadata(0): #> assays(2): counts logcounts #> rownames(2000): PPBP LYZ ... CLIC2 HEMGN #> rowData names(0): #> colnames(2638): AAACATACAACCAC AAACATTGAGCTAC ... TTTGCATGAGAGGC #> TTTGCATGCCTCAC #> colData names(8): cell_source sum ... type r #> reducedDimNames(1): UMAP #> mainExpName: NULL #> altExpNames(0): # for Seurat library(Seurat) s_small <- so_pbmc() clustify( input = s_small, cluster_col = "RNA_snn_res.0.5", ref_mat = cbmc_ref, seurat_out = TRUE ) #> An object of class Seurat #> 2000 features across 2638 samples within 1 assay #> Active assay: RNA (2000 features, 2000 variable features) #> 2 layers present: counts, data #> 1 dimensional reduction calculated: umap # New output option, directly as a vector (in the order of the metadata), which can then be inserted into metadata dataframes and other workflows clustify( input = s_small, cluster_col = "RNA_snn_res.0.5", ref_mat = cbmc_ref, vec_out = TRUE )[1:10] #> [1] "CD4 T" "B" "CD4 T" "CD14+ Mono" "NK" #> [6] "CD4 T" "NK" "NK" "CD4 T" "CD16+ Mono" ``` New reference matrix can be made directly from `SingleCellExperiment` and `Seurat` objects as well. Other scRNAseq experiment object types are supported as well. ``` r # make reference from SingleCellExperiment objects sce_small <- sce_pbmc() sce_ref <- object_ref( input = sce_small, # SCE object cluster_col = "cell_type" # name of column in colData containing cell identities ) # make reference from seurat objects s_small <- so_pbmc() s_ref <- seurat_ref( seurat_object = s_small, cluster_col = "RNA_snn_res.0.5" ) head(s_ref) #> 0 1 2 3 4 5 #> PPBP 0.04883837 0.06494743 0.28763857 0.09375021 0.35662599 0.2442300 #> LYZ 1.40165143 1.39466552 5.21550849 1.42699419 1.35146753 3.4034309 #> S100A9 0.55679700 0.58080250 4.91453355 0.62123058 0.58823794 2.6277996 #> IGLL5 0.03116080 0.04826212 0.02434753 2.44576997 0.03284986 0.2581198 #> GNLY 0.46041901 0.41001072 0.53592906 0.37877736 2.53161887 0.2903092 #> FTL 3.35611600 3.31062958 5.86217774 3.66698837 3.37056910 5.9518479 #> 6 7 8 #> PPBP 0.00000000 0.06527347 6.0941782 #> LYZ 1.32701580 4.84714962 2.5303912 #> S100A9 0.52098541 2.53310734 1.6775692 #> IGLL5 0.05247669 0.10986617 0.2501642 #> GNLY 4.70481754 0.46959958 0.3845813 #> FTL 3.38471536 4.21848878 4.5508242 ``` `clustify_lists()` handles identity assignment of matrix or `SingleCellExperiment` and `seurat` objects based on marker gene lists. ``` r clustify_lists( input = pbmc_matrix_small, metadata = pbmc_meta, cluster_col = "classified", marker = pbmc_markers, marker_inmatrix = FALSE ) #> 0 1 2 3 4 5 6 #> Naive CD4 T 1.5639055 20.19469 31.77095 8.664074 23.844992 19.06931 19.06931 #> Memory CD4 T 1.5639055 20.19469 31.77095 10.568007 23.844992 17.97875 19.06931 #> CD14+ Mono 0.9575077 14.70716 76.21353 17.899569 11.687739 49.86699 16.83210 #> B 0.6564777 12.70976 31.77095 26.422929 13.536295 20.19469 13.53630 #> CD8 T 1.0785353 17.97875 31.82210 12.584823 31.822099 22.71234 40.45383 #> FCGR3A+ Mono 0.6564777 13.63321 72.43684 17.899569 9.726346 56.48245 14.61025 #> NK 0.6564777 14.61025 31.82210 7.757206 31.822099 22.71234 45.05072 #> DC 0.6564777 15.80598 63.34978 19.069308 13.758144 40.56298 17.97875 #> Platelet 0.5428889 13.34769 59.94938 14.215244 15.158755 46.92861 19.49246 #> 7 8 #> Naive CD4 T 6.165348 0.6055118 #> Memory CD4 T 6.165348 0.9575077 #> CD14+ Mono 25.181595 1.0785353 #> B 17.899569 0.1401901 #> CD8 T 7.882145 0.3309153 #> FCGR3A+ Mono 21.409177 0.3309153 #> NK 5.358651 0.3309153 #> DC 45.101877 0.1401901 #> Platelet 19.492465 59.9493793 clustify_lists( input = s_small, marker = pbmc_markers, marker_inmatrix = FALSE, cluster_col = "RNA_snn_res.0.5", seurat_out = TRUE ) #> An object of class Seurat #> 2000 features across 2638 samples within 1 assay #> Active assay: RNA (2000 features, 2000 variable features) #> 2 layers present: counts, data #> 1 dimensional reduction calculated: umap ``` ## Additional resources - [Script](https://github.com/rnabioco/clustifyrdata/blob/master/inst/run_clustifyr.R) for benchmarking, compatible with [`scRNAseq_Benchmark`](https://github.com/tabdelaal/scRNAseq_Benchmark) - Additional reference data (including tabula muris, immgen, etc) are available in a supplemental package [`clustifyrdatahub`](https://github.com/rnabioco/clustifyrdatahub). Also see [list](https://rnabioco.github.io/clustifyrdata/articles/download_refs.html) for individual downloads. - See the [FAQ](https://github.com/rnabioco/clustifyr/wiki/Frequently-asked-questions) for more details.