Name Mode Size
R 040000
data 040000
extdata 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 1 kb
.travis.yml 100644 1 kb 100644 1 kb
DESCRIPTION 100755 1 kb
LICENSE 100644 1 kb
LICENSE.pheatmap 100644 18 kb
NAMESPACE 100755 2 kb 100644 2 kb
[![Build Status](]( # celda: CEllular Latent Dirichlet Allocation "celda" stands for "**CE**llular **L**atent **D**irichlet **A**llocation", which is a suite of Bayesian hierarchical models and supporting functions to perform gene and cell clustering for count data generated by single cell RNA-seq platforms. This algorithm is an extension of the Latent Dirichlet Allocation (LDA) topic modeling framework that has been popular in text mining applications. Celda has advantages over other clustering frameworks: 1. Celda can simultaneously cluster genes into transcriptional states and cells into subpopulations 2. Celda uses count-based Dirichlet-multinomial distributions so no additional normalization is required for 3' DGE single cell RNA-seq 3. These types of models have shown good performance with sparse data. ## Installation Instructions To install the beta release of celda via devtools: ``` library(devtools) install_github("compbiomed/celda@v0.1") ``` ## Examples and vignettes Vignettes are available in the package. An analysis example using celda with RNASeq via vignette('celda-analysis') ## New Features and announcements The v0.1 release of celda represents a useable implementation of the various celda clustering models. Please submit any usability issues or bugs to the issue tracker at You can discuss celda, or ask the developers usage questions, in our [Google Group.](!forum/celda-list)