Name Mode Size
.github 040000
R 040000
README_files 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 1 kb
NAMESPACE 100644 2 kb
NEWS.md 100644 0 kb
README.md 100644 2 kb
README.md
<p style="text-align: center;"> <img src="man/figures/logo.png" alt="Example Image" width="70"> </p> # vmrseq: Detecting variably methylated regions (VMRs) from single-cell bisulfite sequencing The R package `vmrseq` is a novel computational tool developed for pinpointing variably methylated regions (VMRs) in scBS-seq data without prior knowledge on size or location. High-throughput single-cell measurements of DNA methylation allows studying inter-cellular epigenetic heterogeneity, but this task faces the challenges of sparsity and noise. vmrseq overcomes these challenges and identifies variably methylated regions accurately and robustly. ![](man/figures/method.png) ## Installation You can install the development version of `vmrseq` in R from Bioconductor (recommended) or GitHub with: ``` r ### Install stable version from Bioconductor if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("vmrseq") ## Or development version from Github # install.packages("remotes") remotes::install_github("nshen7/vmrseq") ``` ## Online Vignette - An online vignette of 'Get Started' on the `vmrseq` package can be found at [https://rpubs.com/nshen7/vmrseq-vignette](https://rpubs.com/nshen7/vmrseq-vignette). - An example workflow on scBS-seq data analysis using `vmrseq` can be found at [https://github.com/nshen7/vmrseq-workflow-vignette](https://github.com/nshen7/vmrseq-workflow-vignette). ## Docker Image We provide a Docker image for robust setup and use of this package. The Docker image includes all necessary dependencies for the package and vignettes. To pull the Docker image from Docker Hub, use the following command in bash: ``` bash docker pull nshen7/vmrseq-bioc-3.19:latest ``` ## Citation Ning Shen and Keegan Korthauer. 2023. “Vmrseq: Probabilistic Modeling of Single-Cell Methylation Heterogeneity.” bioRxiv. [https://doi.org/10.1101/2023.11.20.567911](https://doi.org/10.1101/2023.11.20.567911). ## License/Copyright [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) This package is made available under an MIT license.