Name Mode Size
R 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
INSTALL 100644 1 kb
NAMESPACE 100644 0 kb
NEWS 100644 1 kb
README.md 100644 3 kb
README.md
# transomics2cytoscape [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.8201898.svg)](https://doi.org/10.5281/zenodo.8201898) [![BioC Release Build Status](http://bioconductor.org/shields/build/release/bioc/transomics2cytoscape.svg)](http://bioconductor.org/checkResults/release/bioc-LATEST/transomics2cytoscape/) - Bioconductor Release Build [![BioC Dev Build Status](http://bioconductor.org/shields/build/devel/bioc/transomics2cytoscape.svg)](http://bioconductor.org/checkResults/devel/bioc-LATEST/transomics2cytoscape/) - Bioconductor Dev Build ## Introduction Visualization of trans-omic networks helps biological interpretation by illustrating pathways where the signals are transmitted. To characterize signals that go across multiple omic layers, [Yugi and colleagues have proposed a method for network visualization](https://pubmed.ncbi.nlm.nih.gov/25131207/) by stacking multiple 2D pathways in a 3D space. The 3D network visualization was realized by [VANTED](https://www.cls.uni-konstanz.de/software/vanted/). However, the visualization relies on time-consuming manual operation. Here we propose **transomics2cytoscape**, an R package that automatically creates 3D network visualization in combination with Cytoscape, [Cy3D App](http://apps.cytoscape.org/apps/cy3d), and [Cytoscape Automation](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1758-4). ## Installation 1. Install Cytoscape from https://cytoscape.org/ 2. Install transomics2cytoscape (see https://www.bioconductor.org/packages/release/bioc/html/transomics2cytoscape.html) ## Example 1. Run Cytoscape (If Cytoscape is already running, you don't need to run it anymore. transomics2cytoscape works only when 1 Cytoscape [window] is up.) 2. Run R. 3. Run the following R code. This will import multiple networks and integrate the networks to a 3D space. (This will take a few minutes.) ```R library(transomics2cytoscape) networkDataDir <- tempfile(); dir.create(networkDataDir) networkLayers <- system.file("extdata/usecase1", "yugi2014.tsv", package = "transomics2cytoscape") stylexml <- system.file("extdata/usecase1", "yugi2014.xml", package = "transomics2cytoscape") suid <- create3Dnetwork(networkDataDir, networkLayers, stylexml) ``` Next Run the following R code. This will add edges between the network layers. (This code execution finishes faster than before.) ``` layer1to2 <- system.file("extdata/usecase1", "k2e.tsv", package = "transomics2cytoscape") suid <- createTransomicEdges(suid, layer1to2) layer2to3 <- system.file("extdata/usecase1", "allosteric_ec2rea.tsv", package = "transomics2cytoscape") suid <- createTransomicEdges(suid, layer2to3) ``` Then, you should have a 3D view with layered networks and transomic interactions between them. (Note that you need to perform operations such as zooming out or adjusting the camera angle.) ![allosteric_result](man/figures/yugi2014.png)