[](https://travis-ci.com/abodein/timeOmics)
[](https://codecov.io/gh/abodein/timeOmics)
[](https://www.gnu.org/licenses/gpl-3.0)
# timeOmics
***timeOmics*** is a generic data-driven framework to integrate multi-Omics longitudinal data (**A.**) measured on the same biological samples and select key temporal features with strong associations within the same sample group.

The main steps of ***timeOmics*** are:
* a pre-processing step (**B.**) Normalize and filter low-expressed features, except those not varying over time,
* a modelling step (**C.**) Capture inter-individual variability in biological/technical replicates and accommodate heterogeneous experimental designs,
* a clustering step (**D.**) Group features with the same expression profile over time. Feature selection step can also be used to identify a signature per cluster,
* a post-hoc validation step (**E.**) Ensure clustering quality.
***timeOmics*** can be applied on both single-Omic or multi-Omics experimental design.
*<font color="green"> If you came to this page thanks to our article and you wish to access its example scripts please follow this
<a href="https://github.com/abodein/timeOmics_frontiers"> link </a>.</font>*
## Installation
### Latest `GitHub` Version
Install the devtools package in R, then load it and install the latest stable version of `timeOmics` from `GitHub`
```r
## install devtools if not installed
if (!requireNamespace("devtools", quietly = TRUE))
install.packages("devtools")
## install timeOmics
devtools::install_github("abodein/timeOmics")
```
## Citing
*Bodein A, Chapleur O, Droit A and LĂȘ Cao K-A (2019) A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types. Front. Genet. 10:963. <a href="http://dx.doi.org/10.3389/fgene.2019.00963"> doi:10.3389/fgene.2019.00963</a>*
## Maintainer
Antoine Bodein (<antoine.bodein.1@ulaval.ca>)
## Bugs/Feature requests
If you have any bugs or feature requests, [let us know](https://github.com/abodein/timeOmics_BioC/issues). Thanks!