% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R, R/methods_SE.R \docType{methods} \name{test_differential_cellularity} \alias{test_differential_cellularity} \alias{test_differential_cellularity,spec_tbl_df-method} \alias{test_differential_cellularity,tbl_df-method} \alias{test_differential_cellularity,tidybulk-method} \alias{test_differential_cellularity,SummarizedExperiment-method} \alias{test_differential_cellularity,RangedSummarizedExperiment-method} \title{Add differential tissue composition information to a tbl} \usage{ test_differential_cellularity( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) \S4method{test_differential_cellularity}{spec_tbl_df}( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) \S4method{test_differential_cellularity}{tbl_df}( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) \S4method{test_differential_cellularity}{tidybulk}( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) \S4method{test_differential_cellularity}{SummarizedExperiment}( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) \S4method{test_differential_cellularity}{RangedSummarizedExperiment}( .data, .formula, .sample = NULL, .transcript = NULL, .abundance = NULL, method = "cibersort", reference = X_cibersort, significance_threshold = 0.05, ... ) } \arguments{ \item{.data}{A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))} \item{.formula}{A formula representing the desired linear model. The formula can be of two forms: multivariable (recommended) or univariable Respectively: \"factor_of_interest ~ .\" or \". ~ factor_of_interest\". The dot represents cell-type proportions, and it is mandatory. If censored regression is desired (coxph) the formula should be of the form \"survival::Surv\(y, dead\) ~ .\"} \item{.sample}{The name of the sample column} \item{.transcript}{The name of the transcript/gene column} \item{.abundance}{The name of the transcript/gene abundance column} \item{method}{A string character. Either \"cibersort\", \"epic\" or \"llsr\". The regression method will be chosen based on being multivariable: lm or cox-regression (both on logit-transformed proportions); or univariable: beta or cox-regression (on logit-transformed proportions). See .formula for multi- or univariable choice.} \item{reference}{A data frame. The transcript/cell_type data frame of integer transcript abundance} \item{significance_threshold}{A real between 0 and 1 (usually 0.05).} \item{...}{Further parameters passed to the method deconvolve_cellularity} } \value{ A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate). A `SummarizedExperiment` object A `SummarizedExperiment` object } \description{ test_differential_cellularity() takes as input A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test. } \details{ `r lifecycle::badge("maturing")` This routine applies a deconvolution method (e.g., Cibersort; DOI: 10.1038/nmeth.3337) and passes the proportions inferred into a generalised linear model (DOI:dx.doi.org/10.1007/s11749-010-0189-z) or a cox regression model (ISBN: 978-1-4757-3294-8) Underlying method for the generalised linear model: data |> deconvolve_cellularity( !!.sample, !!.transcript, !!.abundance, method=method, reference = reference, action="get", ... ) %>% [..] %>% betareg::betareg(.my_formula, .) Underlying method for the cox regression: data |> deconvolve_cellularity( !!.sample, !!.transcript, !!.abundance, method=method, reference = reference, action="get", ... ) %>% [..] %>% mutate(.proportion_0_corrected = .proportion_0_corrected |> boot::logit()) %>% survival::coxph(.my_formula, .) } \examples{ # Regular regression test_differential_cellularity( tidybulk::se_mini , . ~ condition, cores = 1 ) # Cox regression - multiple tidybulk::se_mini |> # Test test_differential_cellularity( survival::Surv(days, dead) ~ ., cores = 1 ) }