Name Mode Size
R 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 0 kb
NEWS.md 100644 1 kb
README.md 100644 27 kb
README.md
# terraTCGAData ## Installation ``` r if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("terraTCGAdata") ``` # Overview The `terraTCGAdata` R package aims to import TCGA datasets, as [MultiAssayExperiment](http://bioconductor.org/packages/MultiAssayExperiment/), available on the Terra platform. The package provides a set of functions that allow the discovery of relevant datasets. It provides one main function and two helper functions: 1. `terraTCGAdata` allows the creation of the `MultiAssayExperiment` object from the different indicated resources. 2. The `getClinicalTable` and `getAssayTable` functions allow for the discovery of datasets within the Terra data model. The column names from these tables can be provided as inputs to the `terraTCGAdata` function. ## Data Some public Terra workspaces come pre-packaged with TCGA data (i.e., cloud data resources are linked within the data model). Particularly the workspaces that are labelled `OpenAccess_V1-0`. Datasets harmonized to the hg38 genome, such as those from the Genomic Data Commons data repository, use a different data model / workflow and are not compatible with the functions in this package. For those that are, we make use of the Terra data model and represent the data as `MultiAssayExperiment`. For more information on `MultiAssayExperiment`, please see the vignette in that package. # Requirements ## Loading packages ``` r library(AnVIL) library(terraTCGAdata) ``` ## gcloud sdk installation A valid GCloud SDK installation is required to use the package. To get set up, see the Bioconductor tutorials for running RStudio on Terra. Use the `gcloud_exists()` function from the *[AnVIL](https://bioconductor.org/packages/3.16/AnVIL)* package to identify whether it is installed in your system. ``` r gcloud_exists() #> [1] TRUE ``` You can also use the `gcloud_project` to set a project name by specifying the project argument: ``` r gcloud_project() #> [1] "bioconductor-rpci-anvil" ``` # Default Data Workspace To get a table of available TCGA workspaces, use the `selectTCGAworkspace()` function: ``` r selectTCGAworkspace() #> [1] "TCGA_COAD_OpenAccess_V1-0_DATA" ``` You can also set the package-wide option with the `terraTCGAworkspace` function and check the setting with `getOption('terraTCGAdata.workspace')` or by running `terraTCGAworkspace` function. ``` r terraTCGAworkspace("TCGA_COAD_OpenAccess_V1-0_DATA") #> [1] "TCGA_COAD_OpenAccess_V1-0_DATA" getOption("terraTCGAdata.workspace") #> [1] "TCGA_COAD_OpenAccess_V1-0_DATA" ``` # Clinical data resources In order to determine what datasets to download, use the `getClinicalTable` function to list all of the columns that correspond to clinical data from the different collection centers. ``` r ct <- getClinicalTable(workspace = "TCGA_COAD_OpenAccess_V1-0_DATA") #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA ct #> # A tibble: 960 × 6 #> clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin clin_…¹ clin_…² clin_…³ clin_…⁴ clin_…⁵ #> <chr> <chr> <chr> <chr> <chr> <chr> #> 1 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.38… gs://f… gs://f… <NA> <NA> <NA> #> 2 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.38… gs://f… gs://f… <NA> <NA> <NA> #> 3 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.38… gs://f… gs://f… <NA> <NA> <NA> #> 4 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.38… gs://f… gs://f… <NA> <NA> <NA> #> 5 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… gs://f… <NA> <NA> <NA> #> 6 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… gs://f… <NA> <NA> <NA> #> 7 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… gs://f… <NA> <NA> <NA> #> 8 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… gs://f… <NA> <NA> <NA> #> 9 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… <NA> <NA> <NA> <NA> #> 10 gs://firecloud-tcga-open-access/tcga/dcc/coad/clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin/nationwidechildrens.org_COAD.bio.Level_1.42… gs://f… <NA> <NA> <NA> <NA> #> # … with 950 more rows, and abbreviated variable names ¹​clin__bio__nationwidechildrens_org__Level_1__auxiliary__clin, ²​clin__bio__nationwidechildrens_org__Level_1__clinical__clin, #> # ³​clin__bio__intgen_org__Level_1__auxiliary__clin, ⁴​clin__bio__intgen_org__Level_1__clinical__clin, ⁵​clin__bio__intgen_org__Level_1__biospecimen__clin names(ct) #> [1] "clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin" "clin__bio__nationwidechildrens_org__Level_1__auxiliary__clin" #> [3] "clin__bio__nationwidechildrens_org__Level_1__clinical__clin" "clin__bio__intgen_org__Level_1__auxiliary__clin" #> [5] "clin__bio__intgen_org__Level_1__clinical__clin" "clin__bio__intgen_org__Level_1__biospecimen__clin" ``` # Clinical data download After picking the column in the `getClinicalTable` output, use the column name as input to the `getClinical` function to obtain the data: ``` r column_name <- "clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin" clin <- getClinical( columnName = column_name, participants = TRUE, workspace = "TCGA_COAD_OpenAccess_V1-0_DATA" ) #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA #> #> ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── #> cols( #> .default = col_character(), #> admin.day_of_dcc_upload = col_double(), #> admin.month_of_dcc_upload = col_double(), #> admin.year_of_dcc_upload = col_double(), #> patient.additional_studies = col_logical(), #> patient.days_to_index = col_double(), #> patient.samples.sample.additional_studies = col_logical(), #> patient.samples.sample.biospecimen_sequence = col_logical(), #> patient.samples.sample.longest_dimension = col_double(), #> patient.samples.sample.intermediate_dimension = col_double(), #> patient.samples.sample.shortest_dimension = col_double(), #> patient.samples.sample.initial_weight = col_double(), #> patient.samples.sample.current_weight = col_logical(), #> patient.samples.sample.freezing_method = col_logical(), #> patient.samples.sample.oct_embedded = col_logical(), #> patient.samples.sample.preservation_method = col_logical(), #> patient.samples.sample.tissue_type = col_logical(), #> patient.samples.sample.composition = col_logical(), #> patient.samples.sample.tumor_descriptor = col_logical(), #> patient.samples.sample.days_to_collection = col_double(), #> patient.samples.sample.time_between_clamping_and_freezing = col_logical() #> # ... with 1225 more columns #> ) #> ℹ Use `spec()` for the full column specifications. clin[, 1:6] #> # A tibble: 460 × 6 #> admin.bcr admin.file_uuid admin.batch_number admin.project_code admin.disease_code admin.day_of_dcc_upload #> <chr> <chr> <chr> <chr> <chr> <dbl> #> 1 nationwide children's hospital a93e6bbe-80de-41a1-9cc6-41fd0f56a4e9 385.38.0 tcga coad 1 #> 2 nationwide children's hospital 8b055cbc-b2ff-4c62-a07c-ccfa44964937 385.38.0 tcga coad 1 #> 3 nationwide children's hospital 61f5baab-8b35-45f4-a188-7d4f3d1a2a8b 422.33.0 tcga coad 1 #> 4 nationwide children's hospital fbad35cb-8be3-4b36-a05d-e93aee1c3975 422.33.0 tcga coad 1 #> 5 nationwide children's hospital 5620a991-2a62-446a-a26e-41ad5c1a92c7 422.33.0 tcga coad 1 #> 6 nationwide children's hospital d7563bda-caea-473f-82fd-905c2bee66ea 422.33.0 tcga coad 1 #> 7 nationwide children's hospital ef41a4ba-feb2-47c2-9292-a0a0680cf9f6 422.33.0 tcga coad 1 #> 8 nationwide children's hospital 96b2bc07-30bf-4e67-b776-371a791249c0 422.33.0 tcga coad 1 #> 9 nationwide children's hospital d1fedef8-53a4-42ff-9cf7-194fd92c004b 76.73.0 tcga coad 1 #> 10 nationwide children's hospital 51c274ce-f952-45da-a0b3-285559d5c361 29.77.0 tcga coad 1 #> # … with 450 more rows dim(clin) #> [1] 460 2376 ``` # Assay data resources We use the same approach for assay data. We first produce a list of assays from the `getAssayTable` and then we select one along with any sample codes of interest. ``` r at <- getAssayTable(workspace = "TCGA_COAD_OpenAccess_V1-0_DATA") at #> # A tibble: 960 × 29 #> snp__ge…¹ snp__…² snp__…³ snp__…⁴ rnase…⁵ rnase…⁶ rnase…⁷ prote…⁸ rnase…⁹ rnase…˟ methy…˟ rnase…˟ cna__…˟ trans…˟ rnase…˟ mirna…˟ rnase…˟ mirna…˟ rnase…˟ rnase…˟ rnase…˟ rnase…˟ methy…˟ rnase…˟ #> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> #> 1 gs://fir… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 2 gs://fir… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 3 gs://fir… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 4 gs://fir… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 5 gs://fir… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 6 gs://fir… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 7 gs://fir… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 8 gs://fir… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… <NA> gs://f… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 9 gs://fir… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> 10 gs://fir… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… gs://f… <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> #> # … with 950 more rows, 5 more variables: mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_isoform_expression__data <chr>, #> # mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data <chr>, rnaseq__illuminaga_rnaseq__unc_edu__Level_3__gene_expression__data <chr>, #> # rnaseq__illuminaga_rnaseq__unc_edu__Level_3__exon_expression__data <chr>, rnaseq__illuminaga_rnaseq__unc_edu__Level_3__splice_junction_expression__data <chr>, and abbreviated variable names #> # ¹​snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg18__seg, ²​snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg18__seg, #> # ³​snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg, ⁴​snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg, #> # ⁵​rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data, ⁶​rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data, #> # ⁷​rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data, ⁸​protein_exp__mda_rppa_core__mdanderson_org__Level_3__protein_normalization__data, … names(at) #> [1] "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg18__seg" #> [2] "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg18__seg" #> [3] "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg" #> [4] "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg" #> [5] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data" #> [6] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data" #> [7] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data" #> [8] "protein_exp__mda_rppa_core__mdanderson_org__Level_3__protein_normalization__data" #> [9] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__exon_quantification__data" #> [10] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__junction_quantification__data" #> [11] "methylation__humanmethylation450__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data" #> [12] "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms__data" #> [13] "cna__illuminahiseq_dnaseqc__hms_harvard_edu__Level_3__segmentation__seg" #> [14] "transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data" #> [15] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data" #> [16] "mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_isoform_expression__data" #> [17] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data" #> [18] "mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data" #> [19] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__junction_quantification__data" #> [20] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__RSEM_genes__data" #> [21] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__RSEM_isoforms__data" #> [22] "rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__exon_quantification__data" #> [23] "methylation__humanmethylation27__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data" #> [24] "rnaseq__illuminaga_rnaseq__unc_edu__Level_3__coverage__data" #> [25] "mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_isoform_expression__data" #> [26] "mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data" #> [27] "rnaseq__illuminaga_rnaseq__unc_edu__Level_3__gene_expression__data" #> [28] "rnaseq__illuminaga_rnaseq__unc_edu__Level_3__exon_expression__data" #> [29] "rnaseq__illuminaga_rnaseq__unc_edu__Level_3__splice_junction_expression__data" ``` # Summary of sample types in the data You can get a summary table of all the samples in the adata by using the `sampleTypesTable`: ``` r sampleTypesTable(workspace = "TCGA_COAD_OpenAccess_V1-0_DATA") #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA #> # A tibble: 5 × 4 #> Code Definition Short.Letter.Code Frequency #> <chr> <chr> <chr> <dbl> #> 1 10 Blood Derived Normal NB 406 #> 2 11 Solid Tissue Normal NT 92 #> 3 06 Metastatic TM 1 #> 4 01 Primary Solid Tumor TP 460 #> 5 02 Recurrent Solid Tumor TR 1 ``` # Intermediate function for obtaining only the data Note that if you have the package-wide option set, the workspace argument is not needed in the function call. ``` r prot <- getAssayData( assayName = "protein_exp__mda_rppa_core__mdanderson_org__Level_3__protein_normalization__data", sampleCode = c("01", "10"), workspace = "TCGA_COAD_OpenAccess_V1-0_DATA", sampleIdx = 1:4 ) head(prot) #> TCGA-3L-AA1B-01A-21-A45F-20 TCGA-4N-A93T-01A-21-A45F-20 TCGA-4T-AA8H-01A-21-A45F-20 TCGA-5M-AAT5-01A-11-A45F-20 #> 14-3-3_beta-R-V -0.080527936 -0.15754027 -0.3840605 -0.08742583 #> 14-3-3_epsilon-M-C 0.055408025 0.05978939 0.1628557 -0.15276783 #> 14-3-3_zeta-R-V -0.002073837 -0.13374613 0.2685011 -0.09958612 #> 4E-BP1-R-V -0.026154748 -0.35821838 0.3263404 -0.15502503 #> 4E-BP1_pS65-R-V -0.110226155 -0.15277484 -0.1381699 -0.09373361 #> 4E-BP1_pT37_T46-R-V -0.202870876 -0.17585007 -0.1931612 0.34677646 ``` # MultiAssayExperiment Finally, once you have collected all the relevant column names, these can be inputs to the main `terraTCGAdata` function: ``` r mae <- terraTCGAdata( clinicalName = "clin__bio__nationwidechildrens_org__Level_1__biospecimen__clin", assays = c("protein_exp__mda_rppa_core__mdanderson_org__Level_3__protein_normalization__data", "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data"), sampleCode = NULL, split = FALSE, sampleIdx = 1:4, workspace = "TCGA_COAD_OpenAccess_V1-0_DATA" ) #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA #> Warning in .checkBarcodes(barcodes): Inconsistent barcode lengths: 27, 28 #> Using namespace/workspace: broad-firecloud-tcga/TCGA_COAD_OpenAccess_V1-0_DATA #> #> ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── #> cols( #> .default = col_character(), #> admin.day_of_dcc_upload = col_double(), #> admin.month_of_dcc_upload = col_double(), #> admin.year_of_dcc_upload = col_double(), #> patient.additional_studies = col_logical(), #> patient.days_to_index = col_double(), #> patient.samples.sample.additional_studies = col_logical(), #> patient.samples.sample.biospecimen_sequence = col_logical(), #> patient.samples.sample.longest_dimension = col_double(), #> patient.samples.sample.intermediate_dimension = col_double(), #> patient.samples.sample.shortest_dimension = col_double(), #> patient.samples.sample.initial_weight = col_double(), #> patient.samples.sample.current_weight = col_logical(), #> patient.samples.sample.freezing_method = col_logical(), #> patient.samples.sample.oct_embedded = col_logical(), #> patient.samples.sample.preservation_method = col_logical(), #> patient.samples.sample.tissue_type = col_logical(), #> patient.samples.sample.composition = col_logical(), #> patient.samples.sample.tumor_descriptor = col_logical(), #> patient.samples.sample.days_to_collection = col_double(), #> patient.samples.sample.time_between_clamping_and_freezing = col_logical() #> # ... with 1225 more columns #> ) #> ℹ Use `spec()` for the full column specifications. #> Warning in .checkBarcodes(barcodes): Inconsistent barcode lengths: 27, 28 #> harmonizing input: #> removing 455 colData rownames not in sampleMap 'primary' mae #> A MultiAssayExperiment object of 2 listed #> experiments with user-defined names and respective classes. #> Containing an ExperimentList class object of length 2: #> [1] protein_exp__mda_rppa_core__mdanderson_org__Level_3__protein_normalization__data: matrix with 200 rows and 4 columns #> [2] rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data: matrix with 20531 rows and 4 columns #> Functionality: #> experiments() - obtain the ExperimentList instance #> colData() - the primary/phenotype DataFrame #> sampleMap() - the sample coordination DataFrame #> `$`, `[`, `[[` - extract colData columns, subset, or experiment #> *Format() - convert into a long or wide DataFrame #> assays() - convert ExperimentList to a SimpleList of matrices #> exportClass() - save data to flat files ``` We expect that most `OpenAccess_V1-0` cancer datasets follow this data model. If you encounter any errors, please provide a minimally reproducible example at <https://github.com/waldronlab/terraTCGAdata>. # Session Info ``` r sessionInfo() #> R version 4.2.1 Patched (2022-09-26 r82921) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.1 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 #> LAPACK: /home/mr148/src/svn/r-4-2/R/lib/R/lib/libRlapack.so #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 #> [8] LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] terraTCGAdata_1.1.1 shiny_1.7.2 testthat_3.1.4 MultiAssayExperiment_1.23.9 SummarizedExperiment_1.27.3 Biobase_2.57.1 #> [7] GenomicRanges_1.49.1 GenomeInfoDb_1.33.7 IRanges_2.31.2 S4Vectors_0.35.4 BiocGenerics_0.43.4 MatrixGenerics_1.9.1 #> [13] matrixStats_0.62.0 AnVIL_1.9.9 dplyr_1.0.10 #> #> loaded via a namespace (and not attached): #> [1] rjson_0.2.21 ellipsis_0.3.2 futile.logger_1.4.3 XVector_0.37.1 rstudioapi_0.14 DT_0.25 bit64_4.0.5 #> [8] AnnotationDbi_1.59.1 fansi_1.0.3 xml2_1.3.3 codetools_0.2-18 cachem_1.0.6 knitr_1.40 pkgload_1.3.0 #> [15] jsonlite_1.8.0 Rsamtools_2.13.4 dbplyr_2.2.1 png_0.1-7 BiocManager_1.30.18 readr_2.1.2 compiler_4.2.1 #> [22] httr_1.4.4 assertthat_0.2.1 Matrix_1.5-1 fastmap_1.1.0 cli_3.4.1 later_1.3.0 formatR_1.12 #> [29] htmltools_0.5.3 prettyunits_1.1.1 tools_4.2.1 glue_1.6.2 GenomeInfoDbData_1.2.9 rappdirs_0.3.3 Rcpp_1.0.9 #> [36] rapiclient_0.1.3 vctrs_0.4.2 Biostrings_2.65.6 rtracklayer_1.57.0 xfun_0.33 stringr_1.4.1 brio_1.1.3 #> [43] rvest_1.0.3 mime_0.12 miniUI_0.1.1.1 lifecycle_1.0.2 restfulr_0.0.15 XML_3.99-0.10 zlibbioc_1.43.0 #> [50] BiocStyle_2.25.0 vroom_1.5.7 hms_1.1.2 promises_1.2.0.1 parallel_4.2.1 lambda.r_1.2.4 yaml_2.3.5 #> [57] curl_4.3.2 memoise_2.0.1 biomaRt_2.53.2 stringi_1.7.8 RSQLite_2.2.17 BiocIO_1.7.1 GenomicDataCommons_1.21.4 #> [64] GenomicFeatures_1.49.7 filelock_1.0.2 BiocParallel_1.31.12 rlang_1.0.6 pkgconfig_2.0.3 bitops_1.0-7 evaluate_0.16 #> [71] lattice_0.20-45 purrr_0.3.4 GenomicAlignments_1.33.1 htmlwidgets_1.5.4 bit_4.0.4 tidyselect_1.1.2 magrittr_2.0.3 #> [78] R6_2.5.1 generics_0.1.3 DelayedArray_0.23.2 DBI_1.1.3 pillar_1.8.1 KEGGREST_1.37.3 RCurl_1.98-1.8 #> [85] tibble_3.1.8 crayon_1.5.1 futile.options_1.0.1 utf8_1.2.2 BiocFileCache_2.5.0 tzdb_0.3.0 rmarkdown_2.16 #> [92] progress_1.2.2 grid_4.2.1 blob_1.2.3 digest_0.6.29 xtable_1.8-4 tidyr_1.2.1 httpuv_1.6.6 #> [99] TCGAutils_1.17.3 ```