Browse code

Removed SAM method as samr package is deprecated

erik.dassi@gmail.com authored on 03/08/2018 12:57:03
Showing 7 changed files

... ...
@@ -1,17 +1,17 @@
1 1
 Package: tRanslatome
2 2
 Type: Package
3 3
 Title: Comparison between multiple levels of gene expression
4
-Version: 1.18.0
5
-Date: 2016-10-05
4
+Version: 1.19.5
5
+Date: 2018-08-03
6 6
 Author: Toma Tebaldi, Erik Dassi, Galena Kostoska
7 7
 Maintainer: Toma Tebaldi <tebaldi@science.unitn.it>, Erik Dassi <erik.dassi@unitn.it>
8
-Depends: R (>= 2.15.0), methods, limma, sigPathway, samr, anota, DESeq,
8
+Depends: R (>= 2.15.0), methods, limma, sigPathway, anota, DESeq,
9 9
         edgeR, RankProd, topGO, org.Hs.eg.db, GOSemSim, Heatplus,
10 10
         gplots, plotrix, Biobase
11
-Description: Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods:  Rank Product, Translational Efficiency, t-test, SAM, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots. 
11
+Description: Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods:  Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots. 
12 12
 License: GPL-3
13 13
 LazyLoad: yes
14 14
 biocViews: CellBiology, GeneRegulation, Regulation, GeneExpression,
15 15
         DifferentialExpression, Microarray, HighThroughputSequencing,
16 16
         QualityControl, GO, MultipleComparisons, Bioinformatics
17
-Packaged: 2016-10-04 08:48:55 UTC; toma
17
+Packaged: 2018-08-03 12:35:55 UTC; toma
... ...
@@ -12,7 +12,6 @@ importFrom(limma, eBayes)
12 12
 import(methods)
13 13
 import(org.Hs.eg.db)
14 14
 importFrom(plotrix, radial.plot)
15
-import(samr)
16 15
 import(sigPathway)
17 16
 import(topGO)
18 17
 export(newTranslatomeDataset, computeDEGs, getExprMatrix, getConditionA, getConditionB, getConditionC, getConditionD, getDataType, getConditionLabels, getLevelLabels, getDEGs)
... ...
@@ -101,7 +101,7 @@ setMethod("computeDEGs", "TranslatomeDataset",
101 101
 			to calculate DEGs with statistical methods!')
102 102
 		
103 103
 		if (!(method %in% 
104
-					c("limma", "SAM", "t-test", "TE", "RP", "ANOTA", "DESeq", "edgeR", "none"))) 
104
+					c("limma", "t-test", "TE", "RP", "ANOTA", "DESeq", "edgeR", "none"))) 
105 105
 			stop('This method is not recognized!')
106 106
 		
107 107
 		# conditions for the two levels (first is 1,2 and second is 3,4)
... ...
@@ -181,8 +181,6 @@ setMethod("computeDEGs", "TranslatomeDataset",
181 181
 			# the normal condition, but cond and cond.2 have been built in a
182 182
 			# different way (tot/sub + pol ctrl) and (tot/sub + pol case)
183 183
 			sig.matrix <- methodLimma(cond, cond.2, cond.vector, cond.2.vector)
184
-		if (method == "SAM") 
185
-			sig.matrix <- methodSAM(cond, cond.2, cond.vector, cond.2.vector)
186 184
 		if (method == "limma") 
187 185
 			sig.matrix <- methodLimma(cond, cond.2, cond.vector, cond.2.vector)
188 186
 		if (method == "ANOTA") 
... ...
@@ -336,23 +334,6 @@ methodTTest <- function(cond, cond.2, cond.vector, cond.2.vector) {
336 334
 }
337 335
 
338 336
 
339
-# Implementation of the SAM helper function
340
-methodSAM <- function(cond, cond.2, cond.vector, cond.2.vector) {
341
-	
342
-	data.tot <- list(x=cond, y=(cond.vector+1), logged2=TRUE)
343
-	sam <- samr(data.tot, resp.type="Two class unpaired", nperms=1000)
344
-	pv.sam <- samr.pvalues.from.perms(sam$tt, sam$ttstar)
345
-	pv.sam.adj <- p.adjust(pv.sam, method="BH", n=length(pv.sam))
346
-
347
-	data.tot2 <- list(x=cond.2, y=(cond.2.vector+1), logged2=TRUE)
348
-	sam2 <- samr(data.tot2, resp.type="Two class unpaired", nperms=1000)
349
-	pv.sam2 <- samr.pvalues.from.perms(sam2$tt, sam2$ttstar)
350
-	pv.sam.adj2 <- p.adjust(pv.sam2, method="BH", n=length(pv.sam2))
351
-
352
-	# build the significance p-values matrix and return it	
353
-	return(cbind(pv.sam, pv.sam.adj, pv.sam2, pv.sam.adj2))
354
-}
355
-
356 337
 # Implementation of the limma helper function
357 338
 methodLimma <- function(cond, cond.2, cond.vector, cond.2.vector) {
358 339
 	
... ...
@@ -4,13 +4,13 @@
4 4
 \title{computeDEGsHelpfile}
5 5
 \description{
6 6
 This function takes as input an object of the class \code{\linkS4class{TranslatomeDataset}} which contains a normalized data matrix coming from high throughput experiment. 
7
-It takes as an input a character label specifying the method that we want to employ in order to detect DEGs(t-test, translational efficiency, ANOTA, DESeq, edgeR, SAM, RP, limma) and returns an object of the class \code{\linkS4class{DEGs}}, in which each gene is assigned an expression class: up- or down-regulated at the first level, up- or down-regulated at the second level, up-regulated at both levels, down-regulated at both levels, up-regulated at the first level and down-regulated at the second level and vice versa.
7
+It takes as an input a character label specifying the method that we want to employ in order to detect DEGs(t-test, translational efficiency, ANOTA, DESeq, edgeR, RP, limma) and returns an object of the class \code{\linkS4class{DEGs}}, in which each gene is assigned an expression class: up- or down-regulated at the first level, up- or down-regulated at the second level, up-regulated at both levels, down-regulated at both levels, up-regulated at the first level and down-regulated at the second level and vice versa.
8 8
 }
9 9
 \usage{computeDEGs(object, method="limma", significance.threshold= 0.05,
10 10
     FC.threshold= 0, log.transformed = FALSE, mult.cor=TRUE)}
11 11
 \arguments{
12 12
  \item{object}{an object of class \code{\linkS4class{TranslatomeDataset}}}
13
- \item{method}{a character string that specifies the method that the user wants to employ in the differential expression analysis. It can have one the following values: \code{limma}, \code{t-test}, \code{RP}, \code{TE}, \code{SAM}, \code{ANOTA}, \code{DESeq} and \code{none}.By default, this value is set to \code{limma},}
13
+ \item{method}{a character string that specifies the method that the user wants to employ in the differential expression analysis. It can have one the following values: \code{limma}, \code{t-test}, \code{RP}, \code{TE}, \code{ANOTA}, \code{DESeq} and \code{none}.By default, this value is set to \code{limma},}
14 14
  \item{significance.threshold}{a numeric value specifying the threshold on the statistical significance below which the genes are considered as differentially expressed, the default is set to \code{0.05},}
15 15
  \item{FC.threshold}{a numeric value specifying the threshold on the absolute log2 fold change, above which the genes are considered as differentially expressed, the default is set to \code{0},}
16 16
   \item{log.transformed}{a boolean variable specifying whether the signals contained in expr.matrix have been previously log2 transformed. By default it is set to \code{FALSE},}
... ...
@@ -3,7 +3,7 @@
3 3
 
4 4
 \title{getDEGsMethodDEGsHelpfile}
5 5
 \description{
6
-This function displays an object of class \code{character} specifying the method that the user employed in the differential expression analysis. It can have one the following values: \code{limma}, \code{t-test}, \code{TE}, \code{RP}, \code{SAM}, \code{ANOTA}, \code{DESeq} and \code{none}.By default, this value is set to \code{limma}. It takes as input an object of class \code{\linkS4class{DEGs}}.
6
+This function displays an object of class \code{character} specifying the method that the user employed in the differential expression analysis. It can have one the following values: \code{limma}, \code{t-test}, \code{TE}, \code{RP}, \code{ANOTA}, \code{DESeq} and \code{none}.By default, this value is set to \code{limma}. It takes as input an object of class \code{\linkS4class{DEGs}}.
7 7
 }
8 8
 \usage{getDEGsMethod(object)}
9 9
 \arguments{
... ...
@@ -6,6 +6,6 @@
6 6
 \title{tRanslatome}
7 7
 
8 8
 \description{
9
-Description:  Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods:  Translational Efficiency, Rank Product, t-test, SAM, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the GO terms with heatmaps, radar plots and barplots.}
9
+Description:  Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods:  Translational Efficiency, Rank Product, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the GO terms with heatmaps, radar plots and barplots.}
10 10
 \keyword{package}
11 11
 
... ...
@@ -106,7 +106,7 @@ The function has the following input parameters:
106 106
 \begin{itemize}
107 107
 \item object, an object of class \code{TranslatomeDataset} containing the data needed for DEGs identification;
108 108
 \item   method, a label that specifies the statistical method for DEGs detection. 
109
-It can have one the following values: \code{limma} \cite{Limma}, \code{t-test} \cite{t-test}, \code{RP} \cite{RP}, \code{TE} \cite{TE}, \code{SAM} \cite{SAM}, \code{ANOTA} \cite{ANOTA}, \code{DESeq} \cite{DESeq}, \code{edgeR} \cite{edgeR} and \code{none};
109
+It can have one the following values: \code{limma} \cite{Limma}, \code{t-test} \cite{t-test}, \code{RP} \cite{RP}, \code{TE} \cite{TE}, \code{ANOTA} \cite{ANOTA}, \code{DESeq} \cite{DESeq}, \code{edgeR} \cite{edgeR} and \code{none};
110 110
 \item  significance.threshold, a threshold on the statistical significance below which the genes are
111 111
 considered as differentially expressed, the default is set to 0.05;
112 112
 \item   FC.threshold, additional threshold on the absolute log2 fold change, above which the genes are
... ...
@@ -322,11 +322,6 @@ The method \code{Radar()} and the method \code{Heatmap()} can be applied also to
322 322
   Courtes FC et al. (2013) 
323 323
   Translatome analysis of CHO cells identify key growth genes. 
324 324
   {\em Journal of Biotechnology}, 167, 215-24.
325
-
326
-\bibitem{SAM}
327
-  Tusher VG, Tibshirani R, Chu G.
328
-  Significance analysis of microarrays applied to the ionizing radiation response
329
-  {\em Proc Natl Acad Sci USA.}, 2001, 98(9):5116-21.
330 325
   
331 326
 \bibitem{ANOTA}
332 327
   Larsson O, Sonenberg N, Nadon R.