Name Mode Size
R 040000
data-raw 040000
data 040000
docs 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 1 kb
NEWS.md 100644 1 kb
README.Rmd 100644 3 kb
README.md 100644 3 kb
_pkgdown.yml 100644 0 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # supersigs <!-- badges: start --> [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-blue.svg)](https://www.tidyverse.org/lifecycle/#experimental) <!-- [![CRAN Status](https://www.r-pkg.org/badges/version/pkgdown)](https://cran.r-project.org/package=pkgdown) --> <!-- [![R build status](https://github.com/r-lib/pkgdown/workflows/R-CMD-check/badge.svg)](https://github.com/r-lib/supersigs/actions) --> <!-- [![Codecov test coverage](https://codecov.io/gh/r-lib/pkgdown/branch/master/graph/badge.svg)](https://codecov.io/gh/r-lib/supersigs?branch=master) --> <!-- badges: end --> `supersigs` is a companion R package to a method proposed by *Afsari, et al. (2021, ELife)* to generate mutational signatures from single nucleotide variants in the cancer genome. **Note: Package is under active development.** More details on the statistical method can be found in this paper: - Afsari, B., Kuo, A., Zhang, Y., Li, L., Lahouel, K., Danilova, L., Favorov, A., Rosenquist, T. A., Grollman, A. P., Kinzler, K. W., Cope, L., Vogelstein, B., & Tomasetti, C. (2021). Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. ELife, 10. [https://doi.org/10.7554/elife.61082](https://doi.org/10.7554/eLife.61082) ## Installation ``` r # Install package from Bioconductor if(!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("supersigs") ``` You can also install the development version of supersigs from github using the `install_github()` function from the `devtools` package. ``` r # Install development version from GitHub devtools::install_github("TomasettiLab/supersigs") ``` ## Data format At a minimum, the data you will need are the age and mutations for each patient. An example is provided below. (Note that you will need to process the data before running the core functions, see `vignette("supersigs")` for details.) #> sample_id age chromosome position ref alt #> 1 1 50 chr1 94447621 G C #> 2 1 50 chr2 202005395 A C #> 3 1 50 chr7 20784978 T A #> 4 1 50 chr7 87179255 C G #> 5 1 50 chr19 1059712 G T #> 6 2 55 chr1 76226977 T C ## Core functions In brief, the `supersigs` package contains three core functions: `get_signature`, `predict_signature`, and `partial_signature`. `get_signature` trains a supervised signature for a given factor (e.g. smoking). ``` r supersig <- get_signature(data = data, factor = "smoking", wgs = F) ``` `predict_signature` uses the trained supervised signature to obtain predicted probabilities (e.g. probability of smoker) on a new dataset. ``` r pred <- predict_signature(object = supersig, newdata = data, factor = "smoking") ``` `partial_signature` removes the contribution of a trained signature from the dataset. ``` r data <- partial_signature(data = data, object = supersig) ``` ## Tutorial To follow a tutorial on how to use the package, see `vignette("supersigs")` (or type `vignette("supersigs")` in R).