Browse code

Merge upstream

Yusuke Koga authored on 16/10/2020 01:47:26
Showing 20 changed files

... ...
@@ -68,7 +68,6 @@ Imports:
68 68
     scran,
69 69
     Seurat (>= 3.1.3),
70 70
     shiny,
71
-    shinyDirectoryInput,
72 71
     shinyFiles,
73 72
     shinyWidgets,
74 73
     shinyjs,
... ...
@@ -111,9 +110,8 @@ Suggests:
111 110
     org.Mm.eg.db,
112 111
     stringr,
113 112
     harmony,
114
-    liger
115
-Remotes: 
116
-    joshua-d-campbell/shiny-directory-input,
113
+    liger,
114
+    shinyDirectoryInput
117 115
 VignetteBuilder: knitr
118 116
 URL: https://compbiomed.github.io/sctk_docs/
119 117
 BugReports: https://github.com/compbiomed/singleCellTK/issues
... ...
@@ -21,8 +21,9 @@
21 21
 #' @return Generates a Python anndata object containing data from \code{inSCE}.
22 22
 #' @examples
23 23
 #' data(sce_chcl, package = "scds")
24
+#' \dontrun{
24 25
 #' exportSCEtoAnnData(sce=sce_chcl, compression="gzip")
25
-#'
26
+#' }
26 27
 #' @export
27 28
 exportSCEtoAnnData <- function(sce,
28 29
                                 useAssay = 'counts',
... ...
@@ -14,8 +14,9 @@
14 14
 #' @return Generates text files containing data from \code{inSCE}.
15 15
 #' @examples
16 16
 #' data(sce_chcl, package = "scds")
17
+#' \dontrun{
17 18
 #' exportSCEtoFlatFile(sce_chcl, "sce_chcl")
18
-#'
19
+#' }
19 20
 #' @export
20 21
 #' @importFrom SummarizedExperiment colData rowData
21 22
 exportSCEtoFlatFile <- function(sce,
... ...
@@ -42,7 +42,7 @@
42 42
 #' @return list of .ggplot objects
43 43
 #' @examples
44 44
 #' data(scExample, package="singleCellTK")
45
-#' \donttest{
45
+#' \dontrun{
46 46
 #' sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
47 47
 #' sce <- getUMAP(inSCE=sce, useAssay="counts", reducedDimName="UMAP")
48 48
 #' sce <- runPerCellQC(sce)
... ...
@@ -85,7 +85,7 @@ reportCellQC <- function(inSCE, output_file = NULL,
85 85
 #' @examples
86 86
 #' data(scExample, package = "singleCellTK")
87 87
 #' sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
88
-#' \donttest{
88
+#' \dontrun{
89 89
 #' sce <- runDecontX(sce)
90 90
 #' sce <- getUMAP(sce)
91 91
 #' reportQCTool(inSCE = sce, algorithm = "DecontX")
... ...
@@ -21,7 +21,7 @@
21 21
 #' @examples
22 22
 #' data(scExample, package = "singleCellTK")
23 23
 #' sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
24
-#' \donttest{
24
+#' \dontrun{
25 25
 #' sce <- runCellQC(sce)
26 26
 #' }
27 27
 #' @export
... ...
@@ -141,7 +141,7 @@ runCellQC <- function(inSCE,
141 141
 #' of \code{inSCE}.
142 142
 #' @examples
143 143
 #' data(scExample, package = "singleCellTK")
144
-#' \donttest{
144
+#' \dontrun{
145 145
 #' sce <- runDropletQC(sce)
146 146
 #' }
147 147
 #' @export
... ...
@@ -9,11 +9,10 @@
9 9
 #' @examples
10 10
 #' data(sce_chcl, package = "scds")
11 11
 #' sce_chcl <- scater_logNormCounts(sce_chcl,"logcounts", "counts")
12
-#' print(sce_chcl)
13 12
 scater_logNormCounts <- function(inSCE, logAssayName = "ScaterLogNormCounts", useAssay = "counts"){
14 13
   inSCE <- scater::logNormCounts(
15 14
     x = inSCE, 
16 15
     name = logAssayName,
17 16
     exprs_values = useAssay)
18 17
   return(inSCE)
19
-}
20 18
\ No newline at end of file
19
+}
... ...
@@ -8,7 +8,6 @@
8 8
 #' @examples
9 9
 #' data(sce_chcl, package = "scds")
10 10
 #' sce_chcl <- scran_modelGeneVar(sce_chcl, "counts")
11
-#' print(head(rowData(sce_chcl)))
12 11
 #' @importFrom SummarizedExperiment assay rowData rowData<-
13 12
 scran_modelGeneVar <- function(inSCE, assayName) {
14 13
     tempDataFrame <- data.frame(scran::modelGeneVar(assay(inSCE, assayName)))
... ...
@@ -9,9 +9,11 @@
9 9
 #' @param directory Output directory. Default is './'.
10 10
 #' @param format The format of output. It currently supports flat files, rds files
11 11
 #' and python h5 files. It can output multiple formats. Default: c("SCE", "AnnData", "FlatFile", "HTAN").
12
-#' @return Generates a file containing data from \code{inSCE} as \code{format}.
13
-#' @examples
14
-#' exportSCE(mouseBrainSubsetSCE, format = "SCE")
12
+#' @example
13
+#' data(scExample)
14
+#' \dontrun{
15
+#' exportSCE(sce, format = "SCE")
16
+#' }
15 17
 #' @export
16 18
 exportSCE <- function(inSCE,
17 19
                       samplename = "sample",
18 20
Binary files a/data/mouseBrainSubsetSCE.rda and b/data/mouseBrainSubsetSCE.rda differ
19 21
Binary files a/data/scExample.rda and b/data/scExample.rda differ
... ...
@@ -34,6 +34,3 @@ Generates a file containing data from \code{inSCE} as \code{format}.
34 34
 \description{
35 35
 Export data in SingleCellExperiment object
36 36
 }
37
-\examples{
38
-exportSCE(mouseBrainSubsetSCE, format = "SCE")
39
-}
... ...
@@ -50,6 +50,7 @@ overridden at function call.
50 50
 }
51 51
 \examples{
52 52
 data(sce_chcl, package = "scds")
53
+\dontrun{
53 54
 exportSCEtoAnnData(sce=sce_chcl, compression="gzip")
54
-
55
+}
55 56
 }
... ...
@@ -37,6 +37,7 @@ The items in the 'metadata' slot remain stored in list and are saved in an RDS f
37 37
 }
38 38
 \examples{
39 39
 data(sce_chcl, package = "scds")
40
+\dontrun{
40 41
 exportSCEtoFlatFile(sce_chcl, "sce_chcl")
41
-
42
+}
42 43
 }
... ...
@@ -103,7 +103,7 @@ A wrapper function which visualizes outputs from the
103 103
 }
104 104
 \examples{
105 105
 data(scExample, package="singleCellTK")
106
-\donttest{
106
+\dontrun{
107 107
 sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
108 108
 sce <- getUMAP(inSCE=sce, useAssay="counts", reducedDimName="UMAP")
109 109
 sce <- runPerCellQC(sce)
... ...
@@ -33,7 +33,7 @@ A  function to generate .html Rmarkdown report for the specified QC algorithm ou
33 33
 \examples{
34 34
 data(scExample, package = "singleCellTK")
35 35
 sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
36
-\donttest{
36
+\dontrun{
37 37
 sce <- runDecontX(sce)
38 38
 sce <- getUMAP(sce)
39 39
 reportQCTool(inSCE = sce, algorithm = "DecontX")
... ...
@@ -55,7 +55,7 @@ A wrapper function to run several QC algorithms on a
55 55
 \examples{
56 56
 data(scExample, package = "singleCellTK")
57 57
 sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
58
-\donttest{
58
+\dontrun{
59 59
 sce <- runCellQC(sce)
60 60
 }
61 61
 }
... ...
@@ -38,7 +38,7 @@ empty droplets in single cell RNA-seq data
38 38
 }
39 39
 \examples{
40 40
 data(scExample, package = "singleCellTK")
41
-\donttest{
41
+\dontrun{
42 42
 sce <- runDropletQC(sce)
43 43
 }
44 44
 }
... ...
@@ -28,7 +28,6 @@ Uses \link[scater]{logNormCounts} to log normalize input data
28 28
 \examples{
29 29
 data(sce_chcl, package = "scds")
30 30
 sce_chcl <- scater_logNormCounts(sce_chcl,"logcounts", "counts")
31
-print(sce_chcl)
32 31
 }
33 32
 \author{
34 33
 Irzam Sarfraz
... ...
@@ -22,7 +22,6 @@ Generates and stores variability data from scran::modelGeneVar in the input sing
22 22
 \examples{
23 23
 data(sce_chcl, package = "scds")
24 24
 sce_chcl <- scran_modelGeneVar(sce_chcl, "counts")
25
-print(head(rowData(sce_chcl)))
26 25
 }
27 26
 \author{
28 27
 Irzam Sarfraz