... | ... |
@@ -30,7 +30,7 @@ print.decorated = function (x, useSource = TRUE, ...) { |
30 | 30 |
bare |
31 | 31 |
} |
32 | 32 |
|
33 |
- fun_def = capture.output(print.function(bare(x), useSource = useSource, ...)) |
|
33 |
+ fun_def = utils::capture.output(print.function(bare(x), useSource = useSource, ...)) |
|
34 | 34 |
for (decorator in attr(x, 'decorators')) |
35 | 35 |
cat(deparse(decorator), '%@%\n') |
36 | 36 |
cat(fun_def, sep = '\n') |
... | ... |
@@ -28,11 +28,13 @@ |
28 | 28 |
#' droplet-based single-cell RNA sequencing experiment. |
29 | 29 |
#' @param inSCE A \link[SingleCellExperiment]{SingleCellExperiment} object. |
30 | 30 |
#' Must contain a raw counts matrix before empty droplets have been removed. |
31 |
+#' @param useAssay A string specifying which assay in the SCE to use. |
|
31 | 32 |
#' @param sample Character vector. Indicates which sample each cell belongs to |
32 | 33 |
#' \link[DropletUtils]{emptyDrops} will be run on cells from each sample separately. |
33 |
-#' If NULL, then all cells will be processed together. Default NULL. |
|
34 |
-#' @param ... Additional arguments to pass to \link[DropletUtils]{barcodeRanks}. |
|
35 |
-#' @param useAssay A string specifying which assay in the SCE to use. |
|
34 |
+#' If NULL, then all cells will be processed together. Default \code{NULL}. |
|
35 |
+#' @param lower See \link[DropletUtils]{emptyDrops} for more information. Default \code{100}. |
|
36 |
+#' @param fitBounds See \link[DropletUtils]{emptyDrops} for more information. Default \code{NULL}. |
|
37 |
+#' @param df See \link[DropletUtils]{emptyDrops} for more information. Default \code{20}. |
|
36 | 38 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with the |
37 | 39 |
#' \link[DropletUtils]{barcodeRanks} output table appended to the |
38 | 40 |
#' \link[SummarizedExperiment]{colData} slot. The columns include |
... | ... |
@@ -54,9 +56,9 @@ |
54 | 56 |
runBarcodeRankDrops <- function(inSCE, |
55 | 57 |
sample = NULL, |
56 | 58 |
useAssay = "counts", |
57 |
- lower=100, |
|
58 |
- fit.bounds=NULL, |
|
59 |
- df=20 |
|
59 |
+ lower = 100, |
|
60 |
+ fitBounds = NULL, |
|
61 |
+ df = 20 |
|
60 | 62 |
) { |
61 | 63 |
if(!is.null(sample)) { |
62 | 64 |
if(length(sample) != ncol(inSCE)) { |
... | ... |
@@ -83,9 +85,9 @@ runBarcodeRankDrops <- function(inSCE, |
83 | 85 |
sceSample <- inSCE[, sceSampleInd] |
84 | 86 |
|
85 | 87 |
mat <- SummarizedExperiment::assay(sceSample, i = useAssay) |
86 |
- result <- .runBarcodeRankDrops(barcode.matrix = mat, lower=100, |
|
87 |
- fit.bounds=NULL, |
|
88 |
- df=20) |
|
88 |
+ result <- .runBarcodeRankDrops(barcode.matrix = mat, lower=lower, |
|
89 |
+ fit.bounds=fitBounds, |
|
90 |
+ df=df) |
|
89 | 91 |
|
90 | 92 |
output[sceSampleInd, ] <- result |
91 | 93 |
} |
... | ... |
@@ -93,7 +95,7 @@ runBarcodeRankDrops <- function(inSCE, |
93 | 95 |
colData(inSCE) = cbind(colData(inSCE), output) |
94 | 96 |
|
95 | 97 |
inSCE@metadata$runBarcodeRankDrops <- argsList[-1] |
96 |
- inSCE@metadata$runBarcodeRankDrops$packageVersion <- packageDescription("DropletUtils")$Version |
|
98 |
+ inSCE@metadata$runBarcodeRankDrops$packageVersion <- utils::packageDescription("DropletUtils")$Version |
|
97 | 99 |
|
98 | 100 |
return(inSCE) |
99 | 101 |
} |
... | ... |
@@ -5,7 +5,7 @@ |
5 | 5 |
alpha=NULL, |
6 | 6 |
retain=NULL, |
7 | 7 |
barcode.args=list(), |
8 |
- BPPARAM=SerialParam()) { |
|
8 |
+ BPPARAM=BiocParallel::SerialParam()) { |
|
9 | 9 |
|
10 | 10 |
barcode.matrix <- .convertToMatrix(barcode.matrix) |
11 | 11 |
|
... | ... |
@@ -16,7 +16,7 @@ |
16 | 16 |
alpha=NULL, |
17 | 17 |
retain=NULL, |
18 | 18 |
barcode.args=list(), |
19 |
- BPPARAM=SerialParam()) |
|
19 |
+ BPPARAM=BiocParallel::SerialParam()) |
|
20 | 20 |
colnames(result) <- paste0("dropletUtils_emptyDrops_", colnames(result)) |
21 | 21 |
|
22 | 22 |
return(result) |
... | ... |
@@ -34,8 +34,14 @@ |
34 | 34 |
#' \link[DropletUtils]{emptyDrops} will be run on cells from each sample separately. |
35 | 35 |
#' If NULL, then all cells will be processed together. Default NULL. |
36 | 36 |
#' @param useAssay A string specifying which assay in the SCE to use. |
37 |
-#' @param ... Additional arguments to pass to \link[DropletUtils]{emptyDrops}. |
|
38 |
-#' matrix. |
|
37 |
+#' @param lower See \link[DropletUtils]{emptyDrops} for more information. |
|
38 |
+#' @param niters See \link[DropletUtils]{emptyDrops} for more information. |
|
39 |
+#' @param testAmbient See \link[DropletUtils]{emptyDrops} for more information. |
|
40 |
+#' @param ignore See \link[DropletUtils]{emptyDrops} for more information. |
|
41 |
+#' @param alpha See \link[DropletUtils]{emptyDrops} for more information. |
|
42 |
+#' @param retain See \link[DropletUtils]{emptyDrops} for more information. |
|
43 |
+#' @param barcodeArgs See \link[DropletUtils]{emptyDrops} for more information. |
|
44 |
+#' @param BPPARAM See \link[DropletUtils]{emptyDrops} for more information. |
|
39 | 45 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with the |
40 | 46 |
#' \link[DropletUtils]{emptyDrops} output table appended to the |
41 | 47 |
#' \link[SummarizedExperiment]{colData} slot. The columns include |
... | ... |
@@ -59,14 +65,14 @@ |
59 | 65 |
runEmptyDrops <- function(inSCE, |
60 | 66 |
sample = NULL, |
61 | 67 |
useAssay = "counts", |
62 |
- lower=100, |
|
63 |
- niters=10000, |
|
64 |
- test.ambient=FALSE, |
|
65 |
- ignore=NULL, |
|
66 |
- alpha=NULL, |
|
67 |
- retain=NULL, |
|
68 |
- barcode.args=list(), |
|
69 |
- BPPARAM=SerialParam() |
|
68 |
+ lower = 100, |
|
69 |
+ niters = 10000, |
|
70 |
+ testAmbient = FALSE, |
|
71 |
+ ignore = NULL, |
|
72 |
+ alpha = NULL, |
|
73 |
+ retain = NULL, |
|
74 |
+ barcodeArgs = list(), |
|
75 |
+ BPPARAM = BiocParallel::SerialParam() |
|
70 | 76 |
) { |
71 | 77 |
# getting the current argument values |
72 | 78 |
argsList <- as.list(formals(fun = sys.function(sys.parent()), envir = parent.frame())) |
... | ... |
@@ -97,25 +103,26 @@ runEmptyDrops <- function(inSCE, |
97 | 103 |
sceSample <- inSCE[, sceSampleInd] |
98 | 104 |
|
99 | 105 |
mat <- SummarizedExperiment::assay(sceSample, i = useAssay) |
100 |
- result <- .runEmptyDrops(barcode.matrix = mat, lower=100, |
|
101 |
- niters=10000, |
|
102 |
- test.ambient=FALSE, |
|
103 |
- ignore=NULL, |
|
104 |
- alpha=NULL, |
|
105 |
- retain=NULL, |
|
106 |
- barcode.args=list(), |
|
107 |
- BPPARAM=SerialParam()) |
|
106 |
+ result <- .runEmptyDrops(barcode.matrix = mat, |
|
107 |
+ lower = lower, |
|
108 |
+ niters = niters, |
|
109 |
+ test.ambient = testAmbient, |
|
110 |
+ ignore = ignore, |
|
111 |
+ alpha = alpha, |
|
112 |
+ retain = retain, |
|
113 |
+ barcode.args = barcodeArgs, |
|
114 |
+ BPPARAM = BPPARAM) |
|
108 | 115 |
|
109 | 116 |
|
110 | 117 |
output[sceSampleInd, ] <- result |
111 |
- metadata(output[sceSampleInd, ]) <- metadata(result) |
|
118 |
+ S4Vectors::metadata(output[sceSampleInd, ]) <- S4Vectors::metadata(result) |
|
112 | 119 |
} |
113 | 120 |
|
114 | 121 |
colData(inSCE) = cbind(colData(inSCE), output) |
115 |
- inSCE@metadata = metadata(output) |
|
122 |
+ inSCE@metadata = S4Vectors::metadata(output) |
|
116 | 123 |
|
117 | 124 |
inSCE@metadata$runEmptyDrops <- argsList[-1] |
118 |
- inSCE@metadata$runEmptyDrops$packageVersion <- packageDescription("DropletUtils")$Version |
|
125 |
+ inSCE@metadata$runEmptyDrops$packageVersion <- utils::packageDescription("DropletUtils")$Version |
|
119 | 126 |
|
120 | 127 |
return(inSCE) |
121 | 128 |
} |
122 | 129 |
\ No newline at end of file |
... | ... |
@@ -7,29 +7,32 @@ |
7 | 7 |
#' overridden at function call. |
8 | 8 |
#' @param sce \link[SingleCellExperiment]{SingleCellExperiment} R object to be |
9 | 9 |
#' exported. |
10 |
-#' @param useAssay Character, default `"counts"`. The name of assay of |
|
10 |
+#' @param useAssay Character. The name of assay of |
|
11 | 11 |
#' interests that will be set as the primary matrix of the output AnnData. |
12 |
-#' @param outputDir Path to the directory where .h5ad outputs will be written |
|
12 |
+#' Default \code{"counts"}. |
|
13 |
+#' @param outputDir Path to the directory where .h5ad outputs will be written. Default is the current working directory. |
|
14 |
+#' @param prefix Prefix to use for the name of the output file. Default \code{"sample"}. |
|
13 | 15 |
#' @param overwrite Boolean. Default \code{TRUE}. |
14 |
-#' @param compression Default \code{None}.If output file compression is required, this variable accepts |
|
15 |
-#' 'gzip' or 'lzf' as inputs. |
|
16 |
-#' @param compression_opts Integer. Default \code{NULL} Sets the compression level |
|
16 |
+#' @param compression If output file compression is required, this variable accepts |
|
17 |
+#' 'gzip' or 'lzf' as inputs. Default \code{None}. |
|
18 |
+#' @param compressionOpts Integer. Sets the compression level |
|
17 | 19 |
#' @param forceDense Default \code{False} Write sparse data as a dense matrix. |
18 |
-#' Refer anndata.write_h5ad documentation for details |
|
20 |
+#' Refer \code{anndata.write_h5ad} documentation for details. Default \code{NULL}. |
|
19 | 21 |
#' @examples |
22 |
+#' \dontrun{ |
|
20 | 23 |
#' data(sce_chcl, package = "scds") |
21 | 24 |
#' exportSCEtoAnnData(sce=sce_chcl, compression="gzip") |
22 |
-#' |
|
25 |
+#' } |
|
26 |
+#' |
|
23 | 27 |
#' @export |
24 |
- |
|
25 | 28 |
exportSCEtoAnnData <- function(sce, |
26 |
- useAssay='counts', |
|
27 |
- outputDir="./", |
|
28 |
- sample = "sample", |
|
29 |
- overwrite=TRUE, |
|
30 |
- compression= c('None','lzf','gzip'), |
|
29 |
+ useAssay = 'counts', |
|
30 |
+ outputDir = "./", |
|
31 |
+ prefix = "sample", |
|
32 |
+ overwrite = TRUE, |
|
33 |
+ compression = c('None','lzf','gzip'), |
|
31 | 34 |
compressionOpts = NULL, |
32 |
- forceDense= c('False','True')){ |
|
35 |
+ forceDense = c('False','True')){ |
|
33 | 36 |
compression <- match.arg(compression) |
34 | 37 |
forceDense <- match.arg(forceDense) |
35 | 38 |
if (compression == 'None'){ |
... | ... |
@@ -58,12 +61,12 @@ exportSCEtoAnnData <- function(sce, |
58 | 61 |
|
59 | 62 |
dir.create(outputDir, showWarnings = FALSE, recursive = TRUE) |
60 | 63 |
annData <- .sce2adata(sce,useAssay) |
61 |
- fileName <- paste0(sample,".h5ad") |
|
64 |
+ fileName <- paste0(prefix,".h5ad") |
|
62 | 65 |
filePath <- file.path(outputDir,fileName) |
63 |
- |
|
66 |
+ |
|
64 | 67 |
if (file.exists(filePath) && !isTRUE(overwrite)) { |
65 | 68 |
stop(paste0(path, " already exists. Change 'outputDir' or set 'overwrite' to TRUE.")) |
66 |
- } |
|
69 |
+ } |
|
67 | 70 |
|
68 | 71 |
annData$write_h5ad(filePath, |
69 | 72 |
compression = compression, |
... | ... |
@@ -9,7 +9,7 @@ |
9 | 9 |
#' \code{TRUE}. |
10 | 10 |
#' @param gzipped Boolean. \code{TRUE} if the output files are to be |
11 | 11 |
#' gzip compressed. \code{FALSE} otherwise. Default |
12 |
-#' \code{TRUE} to save disk space. |
|
12 |
+#' \code{TRUE}. |
|
13 | 13 |
#' @examples |
14 | 14 |
#' data(sce_chcl, package = "scds") |
15 | 15 |
#' exportSCEtoFlatFile(sce_chcl, "sce_chcl") |
... | ... |
@@ -43,7 +43,7 @@ |
43 | 43 |
dataType, |
44 | 44 |
rdsFileName, |
45 | 45 |
sampleName = 'sample', |
46 |
- delayedArray = delayedArrary){ |
|
46 |
+ delayedArray = FALSE){ |
|
47 | 47 |
## Read DropEst RDS |
48 | 48 |
dropEst_rds <- .readDropEstFile(sampleDir,dataType,rdsFileName) |
49 | 49 |
if (dataType == 'filtered' && 'cm' %in% names(dropEst_rds)) { |
... | ... |
@@ -85,10 +85,10 @@ |
85 | 85 |
#' create a SingleCellExperiment object from either the raw or filtered counts matrix. |
86 | 86 |
#' Additionally parse through the RDS to obtain appropriate feature annotations as |
87 | 87 |
#' SCE coldata, in addition to any metadata. |
88 |
-#' @param sampleDir A path to the directory containing the data files. Default "./". |
|
89 |
-#' @param sampleName A User-defined sample name. This will be prepended to all cell barcode IDs. |
|
88 |
+#' @param sampleDirs A path to the directory containing the data files. Default "./". |
|
89 |
+#' @param sampleNames A User-defined sample name. This will be prepended to all cell barcode IDs. |
|
90 | 90 |
#' Default "sample". |
91 |
-#' @param dataType can be "filtered" or "raw". Default is "filtered" |
|
91 |
+#' @param dataType can be "filtered" or "raw". Default \code{"filtered"}. |
|
92 | 92 |
#' @param rdsFileName File name prefix of the DropEst RDS output. default is "cell.counts" |
93 | 93 |
#' @param delayedArray Boolean. Whether to read the expression matrix as |
94 | 94 |
#' \link[DelayedArray]{DelayedArray} object or not. Default \code{TRUE}. |
... | ... |
@@ -103,14 +103,6 @@ |
103 | 103 |
#' found in the DropEst rds, they will be added to the SCE metadata field |
104 | 104 |
#' @return A \code{SingleCellExperiment} object containing the count matrix, |
105 | 105 |
#' the feature annotations from DropEst as ColData, and any metadata from DropEst |
106 |
-#' @examples |
|
107 |
-#' Example |
|
108 |
-#' Example DropEst outputs were downloaded from the DropEst Github |
|
109 |
-#' (http://pklab.med.harvard.edu/viktor/dropest_paper/dropest_0.8.5.zip). |
|
110 |
-#' To run the dropest import function with the example dataset, |
|
111 |
-#' set the sampleDirs variable to the example dropEst provided in SCTK as follows- |
|
112 |
-#' sce <- importDropEst(sampleDirs = c('path/to/dropest/folder/'), |
|
113 |
-#' dataType='filtered', sampleNames=c('sample')) |
|
114 | 106 |
#' @export |
115 | 107 |
importDropEst <- function(sampleDirs = NULL, |
116 | 108 |
dataType = c('filtered','raw'), |
... | ... |
@@ -60,7 +60,6 @@ summarizeTable <- function(inSCE, useAssay="counts", expressionCutoff=1700){ |
60 | 60 |
#' frames instead of file paths. The default is FALSE. |
61 | 61 |
#' @param createLogCounts If TRUE, create a log2(counts+1) normalized assay |
62 | 62 |
#' and include it in the object. The default is TRUE |
63 |
-#' |
|
64 | 63 |
#' @return a SCtkExperiment object |
65 | 64 |
#' @export |
66 | 65 |
#' @examples |
... | ... |
@@ -71,7 +70,7 @@ summarizeTable <- function(inSCE, useAssay="counts", expressionCutoff=1700){ |
71 | 70 |
#' newSCE <- createSCE(assayFile = counts_mat, annotFile = sample_annot, |
72 | 71 |
#' featureFile = row_annot, assayName = "counts", |
73 | 72 |
#' inputDataFrames = TRUE, createLogCounts = TRUE) |
74 |
-createSCE <- simpleLog %@% function(assayFile=NULL, annotFile=NULL, featureFile=NULL, |
|
73 |
+createSCE <- function(assayFile=NULL, annotFile=NULL, featureFile=NULL, |
|
75 | 74 |
assayName="counts", inputDataFrames=FALSE, |
76 | 75 |
createLogCounts=TRUE){ |
77 | 76 |
|
... | ... |
@@ -287,6 +286,7 @@ distinctColors <- function(n, hues = c("red", "cyan", "orange", "blue", |
287 | 286 |
x <- do.call(base::cbind, Mat) |
288 | 287 |
colnames(x) <- cn |
289 | 288 |
rownames(x) <- rn |
289 |
+ |
|
290 | 290 |
return(x) |
291 | 291 |
} |
292 | 292 |
|
... | ... |
@@ -13,6 +13,7 @@ blt <- NULL |
13 | 13 |
scgen <- NULL |
14 | 14 |
sc <- NULL |
15 | 15 |
bbknn <- NULL |
16 |
+pkg_resources <- NULL |
|
16 | 17 |
|
17 | 18 |
.onLoad <- function(libname, pkgname) { |
18 | 19 |
# use superassignment to update global reference to scipy |
... | ... |
@@ -24,6 +25,7 @@ bbknn <- NULL |
24 | 25 |
scgen <<- reticulate::import("scgen", delay_load = TRUE) |
25 | 26 |
sc <<- reticulate::import("scanpy", delay_load = TRUE) |
26 | 27 |
bbknn <<- reticulate::import("bbknn", delay_load = TRUE) |
28 |
+ pkg_resources <<- reticulate::import('pkg_resources',delay_load = TRUE) |
|
27 | 29 |
blt <<- reticulate::import_builtins() |
28 | 30 |
} |
29 | 31 |
|
... | ... |
@@ -94,7 +96,6 @@ sctkPythonInstallConda <- function(envname = "sctk-reticulate", |
94 | 96 |
#' @param packages Character Vector. List of packages to install. |
95 | 97 |
#' @param selectEnvironment Boolean. Run \code{\link[singleCellTK]{selectSCTKVirtualEnvironment}} after installing all packages to select the virtual environment. Default TRUE. |
96 | 98 |
#' @param python The path to a Python interpreter, to be used with the created virtual environment. When NULL, the Python interpreter associated with the current session will be used. Default NULL. |
97 |
-#' @param ... Other parameters to pass to \code{\link[reticulate]{conda_install}}. |
|
98 | 99 |
#' @examples |
99 | 100 |
#' \dontrun{ |
100 | 101 |
#' sctkPythonInstallVirtualEnv(envname = "sctk-reticulate") |
... | ... |
@@ -50,7 +50,7 @@ runBBKNN <-function(inSCE, useAssay = 'logcounts', batch = 'batch', |
50 | 50 |
reducedDimName <- gsub(' ', '_', reducedDimName) |
51 | 51 |
|
52 | 52 |
## Run algorithm |
53 |
- adata <- .sce2adata(inSCE, mainAssay = useAssay) |
|
53 |
+ adata <- .sce2adata(inSCE, useAssay = useAssay) |
|
54 | 54 |
sc$tl$pca(adata, n_comps = nComponents) |
55 | 55 |
bbknn$bbknn(adata, batch_key = batch, n_pcs = nComponents) |
56 | 56 |
sc$tl$umap(adata, n_components = nComponents) |
... | ... |
@@ -56,7 +56,7 @@ runSCGEN <- function(inSCE, useAssay = 'logcounts', batch = 'batch', |
56 | 56 |
nEpochs <- as.integer(nEpochs) |
57 | 57 |
|
58 | 58 |
## Run algorithm |
59 |
- adata <- .sce2adata(inSCE, mainAssay = useAssay) |
|
59 |
+ adata <- .sce2adata(inSCE, useAssay = useAssay) |
|
60 | 60 |
network = scgen$VAEArith(x_dimension = adata$n_vars) |
61 | 61 |
network$train(train_data = adata, n_epochs = nEpochs) |
62 | 62 |
corrAdata <- scgen$batch_removal(network, adata, batch_key = batch, |
... | ... |
@@ -10,7 +10,11 @@ |
10 | 10 |
#' separately. If NULL, then all cells will be processed together. |
11 | 11 |
#' Default NULL. |
12 | 12 |
#' @param seed Seed for the random number generator. Default 12345. |
13 |
-#' @param ... Additional arguments passed to \link[scds]{cxds}. |
|
13 |
+#' @param ntop See \link[scds]{cxds} for more information. Default \code{500}. |
|
14 |
+#' @param binThresh See \link[scds]{cxds} for more information. Default \code{0}. |
|
15 |
+#' @param verb See \link[scds]{cxds} for more information. Default \code{FALSE}. |
|
16 |
+#' @param retRes See \link[scds]{cxds} for more information. Default \code{FALSE}. |
|
17 |
+#' @param estNdbl See \link[scds]{cxds} for more information. Default \code{FALSE}. |
|
14 | 18 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with |
15 | 19 |
#' \link[scds]{cxds} output appended to the |
16 | 20 |
#' \link[SummarizedExperiment]{colData} slot. The columns include |
... | ... |
@@ -20,7 +24,6 @@ |
20 | 24 |
#' data(sce_chcl, package = "scds") |
21 | 25 |
#' sce <- runCxds(sce_chcl) |
22 | 26 |
#' @export |
23 |
-#' @import scds |
|
24 | 27 |
runCxds <- function(inSCE, |
25 | 28 |
sample = NULL, |
26 | 29 |
seed = 12345, |
... | ... |
@@ -67,10 +70,10 @@ runCxds <- function(inSCE, |
67 | 70 |
while(!inherits(result, "SingleCellExperiment") & nGene > 0) { |
68 | 71 |
try({result <- withr::with_seed(seed, scds::cxds(sce = sceSample, |
69 | 72 |
ntop = nGene, |
70 |
- binThresh = 0, |
|
71 |
- verb = FALSE, |
|
72 |
- retRes = FALSE, |
|
73 |
- estNdbl = FALSE))}, silent = TRUE) |
|
73 |
+ binThresh = binThresh, |
|
74 |
+ verb = verb, |
|
75 |
+ retRes = retRes, |
|
76 |
+ estNdbl = estNdbl))}, silent = TRUE) |
|
74 | 77 |
nGene <- nGene - 100 |
75 | 78 |
} |
76 | 79 |
|
... | ... |
@@ -92,7 +95,7 @@ runCxds <- function(inSCE, |
92 | 95 |
colData(inSCE) = cbind(colData(inSCE), output) |
93 | 96 |
|
94 | 97 |
inSCE@metadata$runCxds <- argsList[-1] |
95 |
- inSCE@metadata$runCxds$packageVersion <- packageDescription("scds")$Version |
|
98 |
+ inSCE@metadata$runCxds$packageVersion <- utils::packageDescription("scds")$Version |
|
96 | 99 |
|
97 | 100 |
return(inSCE) |
98 | 101 |
} |
... | ... |
@@ -110,7 +113,13 @@ runCxds <- function(inSCE, |
110 | 113 |
#' separately. If NULL, then all cells will be processed together. |
111 | 114 |
#' Default NULL. |
112 | 115 |
#' @param seed Seed for the random number generator. Default 12345. |
113 |
-#' @param ... Additional arguments passed to \link[scds]{bcds}. |
|
116 |
+#' @param ntop See \link[scds]{bcds} for more information. Default \code{500}. |
|
117 |
+#' @param srat See \link[scds]{bcds} for more information. Default \code{1}. |
|
118 |
+#' @param verb See \link[scds]{bcds} for more information. Default \code{FALSE}. |
|
119 |
+#' @param retRes See \link[scds]{bcds} for more information. Default \code{FALSE}. |
|
120 |
+#' @param nmax See \link[scds]{bcds} for more information. Default \code{"tune"}. |
|
121 |
+#' @param varImp See \link[scds]{bcds} for more information. Default \code{FALSE}. |
|
122 |
+#' @param estNdbl See \link[scds]{bcds} for more information. Default \code{FALSE}. |
|
114 | 123 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with |
115 | 124 |
#' \link[scds]{bcds} output appended to the |
116 | 125 |
#' \link[SummarizedExperiment]{colData} slot. The columns include |
... | ... |
@@ -120,7 +129,6 @@ runCxds <- function(inSCE, |
120 | 129 |
#' data(sce_chcl, package = "scds") |
121 | 130 |
#' sce <- runBcds(sce_chcl) |
122 | 131 |
#' @export |
123 |
-#' @import scds |
|
124 | 132 |
runBcds <- function(inSCE, |
125 | 133 |
sample = NULL, |
126 | 134 |
seed = 12345, |
... | ... |
@@ -146,7 +154,6 @@ runBcds <- function(inSCE, |
146 | 154 |
|
147 | 155 |
## Getting current arguments |
148 | 156 |
argsList <- as.list(formals(fun = sys.function(sys.parent()), envir = parent.frame())) |
149 |
- |
|
150 | 157 |
|
151 | 158 |
## Define result matrix for all samples |
152 | 159 |
if (estNdbl) { |
... | ... |
@@ -169,13 +176,16 @@ runBcds <- function(inSCE, |
169 | 176 |
result <- NULL |
170 | 177 |
nGene <- 500 |
171 | 178 |
while(!inherits(result, "SingleCellExperiment") & nGene > 0) { |
172 |
- try({result <- withr::with_seed(seed, scds::bcds(sce = sceSample, ntop = nGene, |
|
173 |
- srat = srat, |
|
174 |
- verb = verb, |
|
175 |
- estNdbl = estNdbl, |
|
176 |
- varImp = varImp, |
|
177 |
- nmax = nmax, |
|
178 |
- retRes = retRes))}, silent = TRUE) |
|
179 |
+ try({result <- withr::with_seed(seed, |
|
180 |
+ scds::bcds(sce = sceSample, |
|
181 |
+ ntop = nGene, |
|
182 |
+ srat = srat, |
|
183 |
+ verb = verb, |
|
184 |
+ retRes = retRes, |
|
185 |
+ nmax = nmax, |
|
186 |
+ varImp = varImp, |
|
187 |
+ estNdbl = estNdbl |
|
188 |
+ ))}, silent = TRUE) |
|
179 | 189 |
nGene <- nGene - 100 |
180 | 190 |
} |
181 | 191 |
|
... | ... |
@@ -198,7 +208,7 @@ runBcds <- function(inSCE, |
198 | 208 |
colData(inSCE) = cbind(colData(inSCE), output) |
199 | 209 |
|
200 | 210 |
inSCE@metadata$runBcds <- argsList[-1] |
201 |
- inSCE@metadata$runBcds$packageVersion <- packageDescription("scds")$Version |
|
211 |
+ inSCE@metadata$runBcds$packageVersion <- utils::packageDescription("scds")$Version |
|
202 | 212 |
|
203 | 213 |
return(inSCE) |
204 | 214 |
} |
... | ... |
@@ -216,7 +226,13 @@ runBcds <- function(inSCE, |
216 | 226 |
#' separately. If NULL, then all cells will be processed together. |
217 | 227 |
#' Default NULL. |
218 | 228 |
#' @param seed Seed for the random number generator. Default 12345. |
219 |
-#' @param ... Additional arguments passed to \link[scds]{cxds_bcds_hybrid}. |
|
229 |
+#' @param nTop The number of top varialbe genes to consider. Used in both \code{csds} |
|
230 |
+#' and \code{bcds}. Default \code{500}. |
|
231 |
+#' @param cxdsArgs See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{NULL}. |
|
232 |
+#' @param bcdsArgs See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{NULL}. |
|
233 |
+#' @param verb See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}. |
|
234 |
+#' @param estNdbl See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}. |
|
235 |
+#' @param force See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}. |
|
220 | 236 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with |
221 | 237 |
#' \link[scds]{cxds_bcds_hybrid} output appended to the |
222 | 238 |
#' \link[SummarizedExperiment]{colData} slot. The columns include |
... | ... |
@@ -227,12 +243,12 @@ runBcds <- function(inSCE, |
227 | 243 |
#' data(sce_chcl, package = "scds") |
228 | 244 |
#' sce <- runCxdsBcdsHybrid(sce_chcl) |
229 | 245 |
#' @export |
230 |
-#' @import scds |
|
231 | 246 |
runCxdsBcdsHybrid <- function(inSCE, |
232 | 247 |
sample = NULL, |
233 | 248 |
seed = 12345, |
234 |
- cxdsArgs = NULL, |
|
235 |
- bcdsArgs = NULL, |
|
249 |
+ nTop = 500, |
|
250 |
+ cxdsArgs = list(), |
|
251 |
+ bcdsArgs = list(), |
|
236 | 252 |
verb = FALSE, |
237 | 253 |
estNdbl = FALSE, |
238 | 254 |
force = FALSE) { |
... | ... |
@@ -273,11 +289,11 @@ runCxdsBcdsHybrid <- function(inSCE, |
273 | 289 |
nGene <- 500 |
274 | 290 |
while(!inherits(result, "SingleCellExperiment") & nGene > 0) { |
275 | 291 |
try({result <- withr::with_seed(seed, scds::cxds_bcds_hybrid(sce = sceSample, |
276 |
- cxdsArgs=list(ntop = nGene), |
|
277 |
- bcdsArgs=list(ntop = nGene), |
|
278 |
- verb = FALSE, |
|
279 |
- estNdbl = FALSE, |
|
280 |
- force = FALSE))}, silent = TRUE) |
|
292 |
+ cxdsArgs=c(list(ntop = nGene), cxdsArgs), |
|
293 |
+ bcdsArgs=c(list(ntop = nGene), bcdsArgs), |
|
294 |
+ verb = verb, |
|
295 |
+ estNdbl = estNdbl, |
|
296 |
+ force = force))}, silent = TRUE) |
|
281 | 297 |
nGene <- nGene - 100 |
282 | 298 |
} |
283 | 299 |
|
... | ... |
@@ -299,7 +315,7 @@ runCxdsBcdsHybrid <- function(inSCE, |
299 | 315 |
colData(inSCE) = cbind(colData(inSCE), output) |
300 | 316 |
|
301 | 317 |
inSCE@metadata$runCxdsBcdsHybrid <- argsList[-1] |
302 |
- inSCE@metadata$runCxdsBcdsHybrid$packageVersion <- packageDescription("scds")$Version |
|
318 |
+ inSCE@metadata$runCxdsBcdsHybrid$packageVersion <- utils::packageDescription("scds")$Version |
|
303 | 319 |
|
304 | 320 |
return(inSCE) |
305 | 321 |
} |
... | ... |
@@ -18,6 +18,8 @@ |
18 | 18 |
#' @param nNeighbors Integer. Number of neighbors used to construct the KNN |
19 | 19 |
#' graph of observed transcriptomes and simulated doublets. If \code{NULL}, |
20 | 20 |
#' this is set to \code{round(0.5 * sqrt(n_cells))}. Default \code{NULL}. |
21 |
+#' @param minDist Float Determines how tightly UMAP packs points together. If \code{NULL}, |
|
22 |
+#' this is set to 0.1. Default \code{NULL}. |
|
21 | 23 |
#' @param expectedDoubletRate The estimated doublet rate for the experiment. |
22 | 24 |
#' Default 0.1. |
23 | 25 |
#' @param stdevDoubletRate Uncertainty in the expected doublet rate. |
... | ... |
@@ -63,6 +65,11 @@ |
63 | 65 |
#' @param nPrinComps Integer. Number of principal components used to embed |
64 | 66 |
#' the transcriptomes prior to k-nearest-neighbor graph construction. |
65 | 67 |
#' Default 30. |
68 |
+#' @param tsneAngle Float. Determines angular size of a distant node as measured |
|
69 |
+#' from a point in the t-SNE plot. If default, it is set to 0.5 Default \code{NULL}. |
|
70 |
+#' @param tsnePerplexity Integer. The number of nearest neighbors that |
|
71 |
+#' is used in other manifold learning algorithms. |
|
72 |
+#' If default, it is set to 30. Default \code{NULL}. |
|
66 | 73 |
#' @param verbose Boolean. If \code{TRUE}, print progress updates. Default |
67 | 74 |
#' \code{TRUE}. |
68 | 75 |
#' @param seed Seed for the random number generator. Default 12345. |
... | ... |
@@ -82,6 +89,7 @@ runScrublet <- function(inSCE, |
82 | 89 |
useAssay = "counts", |
83 | 90 |
simDoubletRatio = 2.0, |
84 | 91 |
nNeighbors = NULL, |
92 |
+ minDist = NULL, |
|
85 | 93 |
expectedDoubletRate = 0.1, |
86 | 94 |
stdevDoubletRate = 0.02, |
87 | 95 |
syntheticDoubletUmiSubsampling = 1.0, |
... | ... |
@@ -95,6 +103,8 @@ runScrublet <- function(inSCE, |
95 | 103 |
meanCenter = TRUE, |
96 | 104 |
normalizeVariance = TRUE, |
97 | 105 |
nPrinComps = 30L, |
106 |
+ tsneAngle = NULL, |
|
107 |
+ tsnePerplexity = NULL, |
|
98 | 108 |
verbose = TRUE, |
99 | 109 |
seed = 12345) { |
100 | 110 |
|
... | ... |
@@ -143,7 +153,7 @@ runScrublet <- function(inSCE, |
143 | 153 |
|
144 | 154 |
mat <- SummarizedExperiment::assay(sceSample, i = useAssay) |
145 | 155 |
mat <- .convertToMatrix(mat) |
146 |
- |
|
156 |
+ |
|
147 | 157 |
scr <- scrublet$Scrublet(counts_matrix = t(mat), |
148 | 158 |
sim_doublet_ratio = simDoubletRatio, |
149 | 159 |
n_neighbors = nNeighbors, |
... | ... |
@@ -166,8 +176,27 @@ runScrublet <- function(inSCE, |
166 | 176 |
|
167 | 177 |
output[sceSampleInd, "scrublet_score"] <- result[[1]] |
168 | 178 |
output[sceSampleInd, "scrublet_call"] <- result[[2]] |
179 |
+ |
|
180 |
+ ## Extract UMAP and TSNE coordinates |
|
181 |
+ if (is.null(nNeighbors) && is.null(minDist)){ |
|
182 |
+ umap_coordinates <- scrublet$get_umap(scr$manifold_obs_) |
|
183 |
+ }else { |
|
184 |
+ umap_coordinates <- scrublet$get_umap(scr$manifold_obs_, |
|
185 |
+ n_neighbors=as.integer(nNeighbors), |
|
186 |
+ min_dist=minDist) |
|
187 |
+ } |
|
188 |
+ reducedDim(inSCE,'UMAP') <- umap_coordinates |
|
189 |
+ |
|
190 |
+ if (is.null(tsneAngle) && is.null(tsnePerplexity)){ |
|
191 |
+ tsne_coordinates <- scrublet$get_tsne(scr$manifold_obs_) |
|
192 |
+ }else { |
|
193 |
+ tsne_coordinates <- scrublet$get_tsne(scr$manifold_obs_, |
|
194 |
+ angle=tsneAngle, |
|
195 |
+ perplexity=as.integer(tsnePerplexity)) |
|
169 | 196 |
} |
170 |
- |
|
197 |
+ reducedDim(inSCE,'TSNE') <- tsne_coordinates |
|
198 |
+ } |
|
199 |
+ |
|
171 | 200 |
colData(inSCE) = cbind(colData(inSCE), output) |
172 | 201 |
}, silent = TRUE) |
173 | 202 |
|
... | ... |
@@ -177,8 +206,10 @@ runScrublet <- function(inSCE, |
177 | 206 |
} |
178 | 207 |
|
179 | 208 |
inSCE@metadata$runScrublet <- argsList[-1] |
180 |
- ## Add scrublet version |
|
181 |
- ##inSCE@metadata$runScrublet$packageVersion <- packageDescription("scrublet")$Version |
|
209 |
+ |
|
210 |
+ ## add scrublet version to metadata |
|
211 |
+ version <- pkg_resources$require("scrublet")[[1]] |
|
212 |
+ inSCE@metadata$scrublet$packageVersion <- version |
|
182 | 213 |
|
183 | 214 |
return(inSCE) |
184 | 215 |
} |
... | ... |
@@ -55,7 +55,7 @@ |
55 | 55 |
|
56 | 56 |
#' .rowNamesSCE |
57 | 57 |
#' Retrieves a list of genenames/rownames/featurenames from sce object |
58 |
-#' @param sce sce object from which the genenames/rownames/featurenames should be extracted |
|
58 |
+#' @param inSCE sce object from which the genenames/rownames/featurenames should be extracted |
|
59 | 59 |
#' @return list() of genenames/rownames/featurenames |
60 | 60 |
.rowNamesSCE <- function(inSCE) { |
61 | 61 |
return(rownames(inSCE)) |
... | ... |
@@ -209,7 +209,6 @@ seuratReductionPlot <- function(inSCE, useAssay, geneNamesSeurat, reduction) { |
209 | 209 |
#' @param seuratObject from which we have to copy the assay (copy from) |
210 | 210 |
#' @param assaySlotSCE the assay slot in sce object |
211 | 211 |
#' @param assaySlotSeurat the assay slot in seurat object |
212 |
-#' @return |
|
213 | 212 |
.updateAssaySCE <- function(inSCE, geneNames, seuratObject, assaySlotSCE, assaySlotSeurat) { |
214 | 213 |
assay(inSCE, assaySlotSCE) <- NULL |
215 | 214 |
assay(inSCE, assaySlotSCE) <- methods::slot(seuratObject@assays$RNA, assaySlotSeurat) |
... | ... |
@@ -223,9 +222,9 @@ seuratReductionPlot <- function(inSCE, useAssay, geneNamesSeurat, reduction) { |
223 | 222 |
#' @return inSCE output object |
224 | 223 |
#' @export |
225 | 224 |
convertSeuratToSCE <- function(seuratObject) { |
226 |
- inSCE <- as.SingleCellExperiment(seuratObject) |
|
225 |
+ inSCE <- Seurat::as.SingleCellExperiment(seuratObject) |
|
227 | 226 |
assay(inSCE, "seuratNormalizedData") <- methods::slot(seuratObject@assays$RNA, "data") |
228 |
- if (length(slot(seuratObject, "assays")[["RNA"]]@scale.data) > 0) { |
|
227 |
+ if (length(methods::slot(seuratObject, "assays")[["RNA"]]@scale.data) > 0) { |
|
229 | 228 |
assay(inSCE, "seuratScaledData") <- methods::slot(seuratObject@assays$RNA, "scale.data") |
230 | 229 |
} |
231 | 230 |
inSCE <- .addSeuratToMetaDataSCE(inSCE, seuratObject) |
... | ... |
@@ -4,8 +4,10 @@ |
4 | 4 |
\name{SEG} |
5 | 5 |
\alias{SEG} |
6 | 6 |
\title{Stably Expressed Gene (SEG) list obect, with SEG sets for human and mouse.} |
7 |
-\format{list, with two entries `"human"` and `"mouse"`, each is a charactor |
|
8 |
-array.} |
|
7 |
+\format{ |
|
8 |
+list, with two entries `"human"` and `"mouse"`, each is a charactor |
|
9 |
+array. |
|
10 |
+} |
|
9 | 11 |
\source{ |
10 | 12 |
`data('segList', package='scMerge')`` |
11 | 13 |
} |
... | ... |
@@ -8,7 +8,7 @@ Retrieves a list of genenames/rownames/featurenames from sce object} |
8 | 8 |
.rowNamesSCE(inSCE) |
9 | 9 |
} |
10 | 10 |
\arguments{ |
11 |
-\item{sce}{sce object from which the genenames/rownames/featurenames should be extracted} |
|
11 |
+\item{inSCE}{sce object from which the genenames/rownames/featurenames should be extracted} |
|
12 | 12 |
} |
13 | 13 |
\value{ |
14 | 14 |
list() of genenames/rownames/featurenames |
... | ... |
@@ -4,7 +4,9 @@ |
4 | 4 |
\name{emptyDropsSceExample} |
5 | 5 |
\alias{emptyDropsSceExample} |
6 | 6 |
\title{Example PBMC_1k_v3_33538x20 SingleCellExperiment Object} |
7 |
-\format{A \link[SingleCellExperiment]{SingleCellExperiment} object.} |
|
7 |
+\format{ |
|
8 |
+A \link[SingleCellExperiment]{SingleCellExperiment} object. |
|
9 |
+} |
|
8 | 10 |
\usage{ |
9 | 11 |
emptyDropsSceExample |
10 | 12 |
} |
... | ... |
@@ -9,7 +9,7 @@ exportSCEtoAnnData( |
9 | 9 |
sce, |
10 | 10 |
useAssay = "counts", |
11 | 11 |
outputDir = "./", |
12 |
- sample = "sample", |
|
12 |
+ prefix = "sample", |
|
13 | 13 |
overwrite = TRUE, |
14 | 14 |
compression = c("None", "lzf", "gzip"), |
15 | 15 |
compressionOpts = NULL, |
... | ... |
@@ -18,21 +18,25 @@ exportSCEtoAnnData( |
18 | 18 |
} |
19 | 19 |
\arguments{ |
20 | 20 |
\item{sce}{\link[SingleCellExperiment]{SingleCellExperiment} R object to be |
21 |
- exported. |
|
22 |
- @param useAssay Character, default `"counts"`. The name of assay of |
|
23 |
-interests that will be set as the primary matrix of the output AnnData.} |
|
21 |
+exported.} |
|
24 | 22 |
|
25 |
-\item{outputDir}{Path to the directory where .h5ad outputs will be written} |
|
23 |
+\item{useAssay}{Character. The name of assay of |
|
24 |
+interests that will be set as the primary matrix of the output AnnData. |
|
25 |
+Default \code{"counts"}.} |
|
26 |
+ |
|
27 |
+\item{outputDir}{Path to the directory where .h5ad outputs will be written. Default is the current working directory.} |
|
28 |
+ |
|
29 |
+\item{prefix}{Prefix to use for the name of the output file. Default \code{"sample"}.} |
|
26 | 30 |
|
27 | 31 |
\item{overwrite}{Boolean. Default \code{TRUE}.} |
28 | 32 |
|
29 |
-\item{compression}{Default \code{None}.If output file compression is required, this variable accepts |
|
30 |
-'gzip' or 'lzf' as inputs.} |
|
33 |
+\item{compression}{If output file compression is required, this variable accepts |
|
34 |
+'gzip' or 'lzf' as inputs. Default \code{None}.} |
|
31 | 35 |
|
32 |
-\item{forceDense}{Default \code{False} Write sparse data as a dense matrix. |
|
33 |
-Refer anndata.write_h5ad documentation for details} |
|
36 |
+\item{compressionOpts}{Integer. Sets the compression level} |
|
34 | 37 |
|
35 |
-\item{compression_opts}{Integer. Default \code{NULL} Sets the compression level} |
|
38 |
+\item{forceDense}{Default \code{False} Write sparse data as a dense matrix. |
|
39 |
+Refer \code{anndata.write_h5ad} documentation for details. Default \code{NULL}.} |
|
36 | 40 |
} |
37 | 41 |
\description{ |
38 | 42 |
Writes all assays, colData, rowData, reducedDims, and altExps objects in a |
... | ... |
@@ -42,7 +46,9 @@ are available as parameters to this export function and set to defaults. Default |
42 | 46 |
overridden at function call. |
43 | 47 |
} |
44 | 48 |
\examples{ |
49 |
+\dontrun{ |
|
45 | 50 |
data(sce_chcl, package = "scds") |
46 | 51 |
exportSCEtoAnnData(sce=sce_chcl, compression="gzip") |
52 |
+} |
|
47 | 53 |
|
48 | 54 |
} |
... | ... |
@@ -17,7 +17,7 @@ exported.} |
17 | 17 |
|
18 | 18 |
\item{gzipped}{Boolean. \code{TRUE} if the output files are to be |
19 | 19 |
gzip compressed. \code{FALSE} otherwise. Default |
20 |
-\code{TRUE} to save disk space.} |
|
20 |
+\code{TRUE}.} |
|
21 | 21 |
} |
22 | 22 |
\description{ |
23 | 23 |
Writes all assays, colData, rowData, reducedDims, and altExps objects in a |
... | ... |
@@ -13,16 +13,17 @@ importDropEst( |
13 | 13 |
) |
14 | 14 |
} |
15 | 15 |
\arguments{ |
16 |
+\item{sampleDirs}{A path to the directory containing the data files. Default "./".} |
|
17 |
+ |
|
18 |
+\item{dataType}{can be "filtered" or "raw". Default \code{"filtered"}.} |
|
19 |
+ |
|
16 | 20 |
\item{rdsFileName}{File name prefix of the DropEst RDS output. default is "cell.counts"} |
17 | 21 |
|
22 |
+\item{sampleNames}{A User-defined sample name. This will be prepended to all cell barcode IDs. |
|
23 |
+Default "sample".} |
|
24 |
+ |
|
18 | 25 |
\item{delayedArray}{Boolean. Whether to read the expression matrix as |
19 | 26 |
\link[DelayedArray]{DelayedArray} object or not. Default \code{TRUE}.} |
20 |
- |
|
21 |
-\item{sampleDir}{A path to the directory containing the data files. Default "./".} |
|
22 |
- |
|
23 |
-\item{sampleName}{A User-defined sample name. This will be prepended to all cell barcode IDs. |
|
24 |
-Default "sample". |
|
25 |
-@param dataType can be "filtered" or "raw". Default is "filtered"} |
|
26 | 27 |
} |
27 | 28 |
\value{ |
28 | 29 |
A \code{SingleCellExperiment} object containing the count matrix, |
... | ... |
@@ -44,12 +45,3 @@ subset to contain features from the filtered counts matrix alone. |
44 | 45 |
If any annotations of ("saturation_info","merge_targets","reads_per_umi_per_cell") are |
45 | 46 |
found in the DropEst rds, they will be added to the SCE metadata field |
46 | 47 |
} |
47 |
-\examples{ |
|
48 |
-Example |
|
49 |
-Example DropEst outputs were downloaded from the DropEst Github |
|
50 |
-(http://pklab.med.harvard.edu/viktor/dropest_paper/dropest_0.8.5.zip). |
|
51 |
-To run the dropest import function with the example dataset, |
|
52 |
-set the sampleDirs variable to the example dropEst provided in SCTK as follows- |
|
53 |
-sce <- importDropEst(sampleDirs = c('path/to/dropest/folder/'), |
|
54 |
- dataType='filtered', sampleNames=c('sample')) |
|
55 |
-} |
... | ... |
@@ -9,7 +9,7 @@ runBarcodeRankDrops( |
9 | 9 |
sample = NULL, |
10 | 10 |
useAssay = "counts", |
11 | 11 |
lower = 100, |
12 |
- fit.bounds = NULL, |
|
12 |
+ fitBounds = NULL, |
|
13 | 13 |
df = 20 |
14 | 14 |
) |
15 | 15 |
} |
... | ... |
@@ -19,11 +19,15 @@ Must contain a raw counts matrix before empty droplets have been removed.} |
19 | 19 |
|
20 | 20 |
\item{sample}{Character vector. Indicates which sample each cell belongs to |
21 | 21 |
\link[DropletUtils]{emptyDrops} will be run on cells from each sample separately. |
22 |
-If NULL, then all cells will be processed together. Default NULL.} |
|
22 |
+If NULL, then all cells will be processed together. Default \code{NULL}.} |
|
23 | 23 |
|
24 | 24 |
\item{useAssay}{A string specifying which assay in the SCE to use.} |
25 | 25 |
|
26 |
-\item{...}{Additional arguments to pass to \link[DropletUtils]{barcodeRanks}.} |
|
26 |
+\item{lower}{See \link[DropletUtils]{emptyDrops} for more information. Default \code{100}.} |
|
27 |
+ |
|
28 |
+\item{fitBounds}{See \link[DropletUtils]{emptyDrops} for more information. Default \code{NULL}.} |
|
29 |
+ |
|
30 |
+\item{df}{See \link[DropletUtils]{emptyDrops} for more information. Default \code{20}.} |
|
27 | 31 |
} |
28 | 32 |
\value{ |
29 | 33 |
A \link[SingleCellExperiment]{SingleCellExperiment} object with the |
... | ... |
@@ -28,7 +28,19 @@ Default NULL.} |
28 | 28 |
|
29 | 29 |
\item{seed}{Seed for the random number generator. Default 12345.} |
30 | 30 |
|
31 |
-\item{...}{Additional arguments passed to \link[scds]{bcds}.} |
|
31 |
+\item{ntop}{See \link[scds]{bcds} for more information. Default \code{500}.} |
|
32 |
+ |
|
33 |
+\item{srat}{See \link[scds]{bcds} for more information. Default \code{1}.} |
|
34 |
+ |
|
35 |
+\item{verb}{See \link[scds]{bcds} for more information. Default \code{FALSE}.} |
|
36 |
+ |
|
37 |
+\item{retRes}{See \link[scds]{bcds} for more information. Default \code{FALSE}.} |
|
38 |
+ |
|
39 |
+\item{nmax}{See \link[scds]{bcds} for more information. Default \code{"tune"}.} |
|
40 |
+ |
|
41 |
+\item{varImp}{See \link[scds]{bcds} for more information. Default \code{FALSE}.} |
|
42 |
+ |
|
43 |
+\item{estNdbl}{See \link[scds]{bcds} for more information. Default \code{FALSE}.} |
|
32 | 44 |
} |
33 | 45 |
\value{ |
34 | 46 |
A \link[SingleCellExperiment]{SingleCellExperiment} object with |
... | ... |
@@ -26,7 +26,15 @@ Default NULL.} |
26 | 26 |
|
27 | 27 |
\item{seed}{Seed for the random number generator. Default 12345.} |
28 | 28 |
|
29 |
-\item{...}{Additional arguments passed to \link[scds]{cxds}.} |
|
29 |
+\item{ntop}{See \link[scds]{cxds} for more information. Default \code{500}.} |
|
30 |
+ |
|
31 |
+\item{binThresh}{See \link[scds]{cxds} for more information. Default \code{0}.} |
|
32 |
+ |
|
33 |
+\item{verb}{See \link[scds]{cxds} for more information. Default \code{FALSE}.} |
|
34 |
+ |
|
35 |
+\item{retRes}{See \link[scds]{cxds} for more information. Default \code{FALSE}.} |
|
36 |
+ |
|
37 |
+\item{estNdbl}{See \link[scds]{cxds} for more information. Default \code{FALSE}.} |
|
30 | 38 |
} |
31 | 39 |
\value{ |
32 | 40 |
A \link[SingleCellExperiment]{SingleCellExperiment} object with |
... | ... |
@@ -8,8 +8,9 @@ runCxdsBcdsHybrid( |
8 | 8 |
inSCE, |
9 | 9 |
sample = NULL, |
10 | 10 |
seed = 12345, |
11 |
- cxdsArgs = NULL, |
|
12 |
- bcdsArgs = NULL, |
|
11 |
+ nTop = 500, |
|
12 |
+ cxdsArgs = list(), |
|
13 |
+ bcdsArgs = list(), |
|
13 | 14 |
verb = FALSE, |
14 | 15 |
estNdbl = FALSE, |
15 | 16 |
force = FALSE |
... | ... |
@@ -26,7 +27,18 @@ Default NULL.} |
26 | 27 |
|
27 | 28 |
\item{seed}{Seed for the random number generator. Default 12345.} |
28 | 29 |
|
29 |
-\item{...}{Additional arguments passed to \link[scds]{cxds_bcds_hybrid}.} |
|
30 |
+\item{nTop}{The number of top varialbe genes to consider. Used in both \code{csds} |
|
31 |
+and \code{bcds}. Default \code{500}.} |
|
32 |
+ |
|
33 |
+\item{cxdsArgs}{See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{NULL}.} |
|
34 |
+ |
|
35 |
+\item{bcdsArgs}{See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{NULL}.} |
|
36 |
+ |
|
37 |
+\item{verb}{See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}.} |
|
38 |
+ |
|
39 |
+\item{estNdbl}{See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}.} |
|
40 |
+ |
|
41 |
+\item{force}{See \link[scds]{cxds_bcds_hybrid} for more information. Default \code{FALSE}.} |
|
30 | 42 |
} |
31 | 43 |
\value{ |
32 | 44 |
A \link[SingleCellExperiment]{SingleCellExperiment} object with |
... | ... |
@@ -10,12 +10,12 @@ runEmptyDrops( |
10 | 10 |
useAssay = "counts", |
11 | 11 |
lower = 100, |
12 | 12 |
niters = 10000, |
13 |
- test.ambient = FALSE, |
|
13 |
+ testAmbient = FALSE, |
|
14 | 14 |
ignore = NULL, |
15 | 15 |
alpha = NULL, |
16 | 16 |
retain = NULL, |
17 |
- barcode.args = list(), |
|
18 |
- BPPARAM = SerialParam() |
|
17 |
+ barcodeArgs = list(), |
|
18 |
+ BPPARAM = BiocParallel::SerialParam() |
|
19 | 19 |
) |
20 | 20 |
} |
21 | 21 |
\arguments{ |
... | ... |
@@ -28,8 +28,21 @@ If NULL, then all cells will be processed together. Default NULL.} |
28 | 28 |
|
29 | 29 |
\item{useAssay}{A string specifying which assay in the SCE to use.} |
30 | 30 |
|
31 |
-\item{...}{Additional arguments to pass to \link[DropletUtils]{emptyDrops}. |
|
32 |
-matrix.} |
|
31 |
+\item{lower}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
32 |
+ |
|
33 |
+\item{niters}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
34 |
+ |
|
35 |
+\item{testAmbient}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
36 |
+ |
|
37 |
+\item{ignore}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
38 |
+ |
|
39 |
+\item{alpha}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
40 |
+ |
|
41 |
+\item{retain}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
42 |
+ |
|
43 |
+\item{barcodeArgs}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
44 |
+ |
|
45 |
+\item{BPPARAM}{See \link[DropletUtils]{emptyDrops} for more information.} |
|
33 | 46 |
} |
34 | 47 |
\value{ |
35 | 48 |
A \link[SingleCellExperiment]{SingleCellExperiment} object with the |
... | ... |
@@ -10,6 +10,7 @@ runScrublet( |
10 | 10 |
useAssay = "counts", |
11 | 11 |
simDoubletRatio = 2, |
12 | 12 |
nNeighbors = NULL, |
13 |
+ minDist = NULL, |
|
13 | 14 |
expectedDoubletRate = 0.1, |
14 | 15 |
stdevDoubletRate = 0.02, |
15 | 16 |
syntheticDoubletUmiSubsampling = 1, |
... | ... |
@@ -23,6 +24,8 @@ runScrublet( |
23 | 24 |
meanCenter = TRUE, |
24 | 25 |
normalizeVariance = TRUE, |
25 | 26 |
nPrinComps = 30L, |
27 |
+ tsneAngle = NULL, |
|
28 |
+ tsnePerplexity = NULL, |
|
26 | 29 |
verbose = TRUE, |
27 | 30 |
seed = 12345 |
28 | 31 |
) |
... | ... |
@@ -45,6 +48,9 @@ the number of observed transcriptomes. Default 2.0.} |
45 | 48 |
graph of observed transcriptomes and simulated doublets. If \code{NULL}, |
46 | 49 |
this is set to \code{round(0.5 * sqrt(n_cells))}. Default \code{NULL}.} |
47 | 50 |
|
51 |
+\item{minDist}{Float Determines how tightly UMAP packs points together. If \code{NULL}, |
|
52 |
+this is set to 0.1. Default \code{NULL}.} |
|
53 |
+ |
|
48 | 54 |
\item{expectedDoubletRate}{The estimated doublet rate for the experiment. |
49 | 55 |
Default 0.1.} |
50 | 56 |
|
... | ... |
@@ -103,6 +109,13 @@ reduction, unless \code{meanCenter} is \code{TRUE}. Default \code{TRUE}.} |
103 | 109 |
the transcriptomes prior to k-nearest-neighbor graph construction. |
104 | 110 |
Default 30.} |
105 | 111 |
|
112 |
+\item{tsneAngle}{Float. Determines angular size of a distant node as measured |
|
113 |
+from a point in the t-SNE plot. If default, it is set to 0.5 Default \code{NULL}.} |
|
114 |
+ |
|
115 |
+\item{tsnePerplexity}{Integer. The number of nearest neighbors that |
|
116 |
+is used in other manifold learning algorithms. |
|
117 |
+If default, it is set to 30. Default \code{NULL}.} |
|
118 |
+ |
|
106 | 119 |
\item{verbose}{Boolean. If \code{TRUE}, print progress updates. Default |
107 | 120 |
\code{TRUE}.} |
108 | 121 |
|
... | ... |
@@ -5,7 +5,9 @@ |
5 | 5 |
\alias{sceBatches} |
6 | 6 |
\title{Example Single Cell RNA-Seq data in SingleCellExperiment object, with |
7 | 7 |
different batches annotated} |
8 |
-\format{SingleCellExperiment} |
|
8 |
+\format{ |
|
9 |
+SingleCellExperiment |
|
10 |
+} |
|
9 | 11 |
\source{ |
10 | 12 |
DOI: 10.2337/db16-0405 and 10.1016/j.cmet.2016.08.018 |
11 | 13 |
} |
... | ... |
@@ -20,8 +20,6 @@ sctkPythonInstallVirtualEnv( |
20 | 20 |
\item{selectEnvironment}{Boolean. Run \code{\link[singleCellTK]{selectSCTKVirtualEnvironment}} after installing all packages to select the virtual environment. Default TRUE.} |
21 | 21 |
|
22 | 22 |
\item{python}{The path to a Python interpreter, to be used with the created virtual environment. When NULL, the Python interpreter associated with the current session will be used. Default NULL.} |
23 |
- |
|
24 |
-\item{...}{Other parameters to pass to \code{\link[reticulate]{conda_install}}.} |
|
25 | 23 |
} |
26 | 24 |
\description{ |
27 | 25 |
Install all Python packages used in the \code{\link{singleCellTK}} package |