Browse code

Fixed BioC errors & warnings

Irzam Sarfraz authored on 13/10/2021 17:56:28
Showing 6 changed files

... ...
@@ -1,7 +1,7 @@
1 1
 Package: singleCellTK
2 2
 Type: Package
3 3
 Title: Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data
4
-Version: 2.2.2
4
+Version: 2.3.1
5 5
 Authors@R: c(person(given="Yichen", family="Wang", email="wangych@bu.edu", role=c("aut", "cre"),
6 6
                     comment = c(ORCID = "0000-0003-4347-5199")),
7 7
              person(given="Irzam", family="Sarfraz", email="irzam9095@gmail.com", role=c("aut")),
... ...
@@ -86,7 +86,6 @@ Imports:
86 86
     enrichR,
87 87
     celda,
88 88
     shinycssloaders,
89
-    uwot,
90 89
     DropletUtils,
91 90
     scds (>= 1.2.0),
92 91
     reticulate (>= 1.14),
... ...
@@ -106,7 +105,8 @@ Imports:
106 105
     metap,
107 106
     VAM (>= 0.5.3),
108 107
     tibble,
109
-    rlang
108
+    rlang,
109
+    stats
110 110
 RoxygenNote: 7.1.1
111 111
 Suggests:
112 112
     testthat,
... ...
@@ -36,8 +36,7 @@ descriptionEmptyDrops <- function() {
36 36
     return(list(
37 37
         introduction = "It is crucial to distinguish the data occurring from real cells
38 38
              and empty droplets containing ambient RNA. SCTK employs the
39
-             [EmptyDrops](https://rdrr.io/github/MarioniLab/DropletUtils/man/emptyDrops.html)
40
-             algorithm from the
39
+             EmptyDrops algorithm from the
41 40
             [DropletUtils](https://bioconductor.org/packages/release/bioc/html/DropletUtils.html)
42 41
             package to test for empty droplets. ",
43 42
         runEmptyDrops = "The wrapper function `runEmptyDrops` can be used to separately run the
... ...
@@ -80,7 +79,7 @@ descriptionBarcodeRank <- function() {
80 79
 
81 80
 descriptionScrublet <- function() {
82 81
     return(list(
83
-        introduction = "[Scrublet](https://github.com/swolock/scrublet/blob/master/examples/scrublet_basics.ipynb) aims to detect doublets by
82
+        introduction = "Scrublet aims to detect doublets by
84 83
              creating simulated doublets from combining transcriptomic profiles of existing cells in the dataset. ",
85 84
         parameter = "The `sample` parameter indicates what sample each cell originated from.
86 85
              It can be set to `NULL` if all cells in the dataset came from the same sample. ",
... ...
@@ -99,7 +98,7 @@ descriptionScrublet <- function() {
99 98
 
100 99
 descriptionDoubletFinder <- function() {
101 100
     return(list(
102
-        introduction = "[DoubletFinder](https://github.com/chris-mcginnis-ucsf/DoubletFinder) is a doublet detection algorithm which depends on
101
+        introduction = "DoubletFinder is a doublet detection algorithm which depends on
103 102
             the single cell analysis package
104 103
             [Seurat](https://cran.r-project.org/web/packages/Seurat/index.html). ",
105 104
         runDoubletFinder = "The wrapper function `runDoubletFinder` can be used to separately run the
... ...
@@ -101,11 +101,11 @@ importMultipleSources <- function(allImportEntries, delayedArray = FALSE) {
101 101
       newSce <- expSetDataTag(
102 102
         inSCE = newSce,
103 103
         assayType = "raw",
104
-        assays = assayNames(newSce))
104
+        assays = SummarizedExperiment::assayNames(newSce))
105 105
     }
106 106
     else if(entry$type %in% c("rds", "files")){
107 107
       # Check if tags already stored in uploaded rds/files
108
-      if(is.null(metadata(newSce)$assayType)){
108
+      if(is.null(S4Vectors::metadata(newSce)$assayType)){
109 109
         try({
110 110
           counts(newSce)
111 111
           newSce <- expSetDataTag(
... ...
@@ -131,14 +131,14 @@ importMultipleSources <- function(allImportEntries, delayedArray = FALSE) {
131 131
         }, silent = TRUE)
132 132
         
133 133
         try({
134
-          decontXcounts(newSce)
134
+          celda::decontXcounts(newSce)
135 135
           newSce <- expSetDataTag(
136 136
             inSCE = newSce,
137 137
             assayType = "raw",
138 138
             assays = "decontXcounts")
139 139
         }, silent = TRUE)
140 140
         
141
-        untaggedAssays <- assayNames(newSce)
141
+        untaggedAssays <- SummarizedExperiment::assayNames(newSce)
142 142
         untaggedAssays <- untaggedAssays[! untaggedAssays %in% c('counts', 'logcounts', 'normcounts', 'decontX')]
143 143
         
144 144
         newSce <- expSetDataTag(
... ...
@@ -1581,7 +1581,7 @@ shinyServer(function(input, output, session) {
1581 1581
   }
1582 1582
 
1583 1583
   observeEvent(input$runQC, withConsoleMsgRedirect({
1584
-    withBusyIndicatorServer("runQC", {
1584
+    #withBusyIndicatorServer("runQC", {
1585 1585
       if (!qcInputExists()) {
1586 1586
         insertUI(
1587 1587
           selector = "#qcPageErrors",
... ...
@@ -1709,7 +1709,7 @@ shinyServer(function(input, output, session) {
1709 1709
         # Show downstream analysis options
1710 1710
         callModule(module = nonLinearWorkflow, id = "nlw-qcf", parent = session, nbc = TRUE, cw = TRUE, cv = TRUE)
1711 1711
       }
1712
-    })
1712
+    #})
1713 1713
 
1714 1714
   }))
1715 1715
 
... ...
@@ -3,10 +3,6 @@ title: "Generation of comprehensive quality control metrics with SCTK"
3 3
 output: html_document
4 4
 ---
5 5
 
6
-```{r setup, include=FALSE}
7
-knitr::opts_chunk$set(eval = FALSE)
8
-```
9
-
10 6
 # Introduction
11 7
 
12 8
 This pipeline will import data from single-cell preprocessing algorithms (e.g. [CellRanger](https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger), [HCA Optimus](https://data.humancellatlas.org/pipelines/optimus-workflow), [Alevin](https://salmon.readthedocs.io/en/latest/alevin.html)), generate various quality control metrics (e.g. general metrics, doublet scores, contamination estimates) using multiple tools, and output results in standard data containers (e.g. [SingleCellExperiment](https://rdrr.io/bioc/SingleCellExperiment/man/SingleCellExperiment.html), [Seurat object](https://satijalab.org/seurat/index.html), [AnnData](https://github.com/theislab/anndata)). 
... ...
@@ -53,13 +49,13 @@ If you have not used docker before, you can follow the instruction to install an
53 49
 
54 50
 The Docker image can be obtained by running: 
55 51
 
56
-```{bash}
52
+```{bash, eval=FALSE}
57 53
 docker pull campbio/sctk_qc:2.2.1
58 54
 ```
59 55
 
60 56
 The usage of each argument is the same as running command line analysis. Here is an example code to perform QC on CellRangerV3 data with SCTK docker:
61 57
 
62
-```{bash}
58
+```{bash, eval=FALSE}
63 59
 docker run --rm -v /path/to/data:/SCTK_docker \
64 60
 -it campbio/sctk_qc:2.2.1 \
65 61
 -b /SCTK_docker/cellranger \
... ...
@@ -79,7 +75,7 @@ Please refer to the section [*Parameters*](#parameters-1) for more details about
79 75
 
80 76
 Users who have not used [Singularity](https://singularity.hpcng.org/user-docs/master/) before can install it following the instruction [here](https://sylabs.io/guides/2.6/user-guide/installation.html). The Singularity image for SCTK-QC can be easily built using Docker Hub as a source:
81 77
 
82
-```{bash}
78
+```{bash, eval=FALSE}
83 79
 singularity pull docker://campbio/sctk_qc:2.2.1
84 80
 ```
85 81
 
... ...
@@ -87,7 +83,7 @@ The usage of singleCellTK Singularity image is very similar to that of Docker. I
87 83
 
88 84
 It's recommended to re-set the home directory when you run singularity. Singularity will mount `\$HOME` path on your machine by default, which might contain your personal R/Python library folder. If we don't re-set the home to mount, singularity will try to use R/Python libraries which are not built within the singularity image and cause some conflicts. You can point to some "sanitized home", which is different from `\$HOME` path on your machine, using argument `-H`/`--home` [(see more information)](https://sylabs.io/guides/3.1/user-guide/bind_paths_and_mounts.html). Besides, you can use argument `--bind`/`-B` to specify your own mount volume, which is the path that contains the dataset and will be used to store the output of QC pipeline. The example is shown as below:
89 85
 
90
-```{bash}
86
+```{bash, eval=FALSE}
91 87
 singularity run --home=/PathToSanitizedHome \
92 88
 --bind /PathToData:/data sctk_qc_2.2.1.sif \
93 89
 -P CellRangerV3 \
... ...
@@ -104,7 +100,7 @@ singularity run --home=/PathToSanitizedHome \
104 100
 
105 101
 One important note about this docker image: please run the docker image on a machine / node which has a **CPU** with the following architecture: **broadwell, haswell, skylake, cascadelake or the latest architecture**. This can avoid having the "illegal operation" issue from Scrublet package, because this Python package are compiled by SIMD instructions that are compatible with these CPU architectures. Please specify the CPU architecture, at the script header after `#$ -l cpu_arch=`, as one of the following: `broadwell`, `haswell`, `skylake`, `cascadelake` or latest architecture. One of the example is shown below: 
106 102
 
107
-```{bash}
103
+```{bash, eval=FALSE}
108 104
 #!/bin/bash
109 105
 #$ -cwd
110 106
 #$ -j y
... ...
@@ -10,7 +10,7 @@
10 10
 
11 11
 
12 12
 
13
-<meta name="date" content="2021-09-27" />
13
+<meta name="date" content="2021-10-11" />
14 14
 
15 15
 <title>Introduction to singleCellTK</title>
16 16
 
... ...
@@ -170,12 +170,12 @@ function toggle_visibility(id1) {
170 170
 
171 171
 
172 172
 <h1 class="title toc-ignore">Introduction to singleCellTK</h1>
173
-<p class="author-name">David Jenkins<span class="affil-mark">1,2</span>, Tyler Faits<span class="affil-mark">1,2</span>, Rui Hong<span class="affil-mark">1,2</span>, Zhe Wang<span class="affil-mark">1,2</span>, Salam Abdullatif<span class="affil-mark">1</span>, Vidya Akapoor<span class="affil-mark">3</span>, Shruthi Bandyadka<span class="affil-mark">1,2</span>, Xinyun Cao<span class="affil-mark">3</span>, Yusuke Koga<span class="affil-mark">1,2</span>, Anastasia Leshchyk<span class="affil-mark">1,2</span>, Irzam Sarfraz<span class="affil-mark">1</span>, Yichen Wang<span class="affil-mark">1</span>, W. Evan Johnson<span class="affil-mark">1,2</span> and Joshua D. Campbell<span class="affil-mark">1,2*</span></p>
173
+<p class="author-name">Yichen Wang<span class="affil-mark">1</span>, Irzam Sarfraz<span class="affil-mark">1</span>, Rui Hong<span class="affil-mark">1,2</span>, Yusuke Koga<span class="affil-mark">1,2</span>, Salam Abdullatif<span class="affil-mark">1</span>, David Jenkins<span class="affil-mark">1,2</span>, Vidya Akavoor<span class="affil-mark">3</span>, Xinyun Cao<span class="affil-mark">3</span>, Shruthi Bandyadka<span class="affil-mark">1,2</span>, Anastasia Leshchyk<span class="affil-mark">1,2</span>, Tyler Faits<span class="affil-mark">1,2</span>, Mohammed Muzamil Khan<span class="affil-mark">1,2</span>, Zhe Wang<span class="affil-mark">1,2</span>, W. Evan Johnson<span class="affil-mark">1,2</span> and Joshua D. Campbell<span class="affil-mark">1,2*</span></p>
174 174
 <p class="author-affiliation"><span class="affil-mark">1</span>The Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA<br><span class="affil-mark">2</span>Program in Bioinformatics, Boston University, Boston, MA<br><span class="affil-mark">3</span>Rafik B. Hariri Institute for Computing and Computational Science and Engineering, Boston University, Boston, MA</p>
175 175
 <p class="author-email"><span class="affil-mark">*</span><a href="mailto:camp@bu.edu">camp@bu.edu</a></p>
176
-<h4 class="date">27 September 2021</h4>
176
+<h4 class="date">11 October 2021</h4>
177 177
 <h4 class="package">Package</h4>
178
-<p>singleCellTK 2.2.1</p>
178
+<p>singleCellTK 2.2.2</p>
179 179
 
180 180
 </div>
181 181
 
... ...
@@ -225,7 +225,7 @@ vignettes to help you get started, which are all available at <a href="https://w
225 225
 ## [8] methods   base     
226 226
 ## 
227 227
 ## other attached packages:
228
-##  [1] BiocStyle_2.20.2            singleCellTK_2.2.1         
228
+##  [1] BiocStyle_2.20.2            singleCellTK_2.2.2         
229 229
 ##  [3] DelayedArray_0.18.0         Matrix_1.3-4               
230 230
 ##  [5] SingleCellExperiment_1.14.1 SummarizedExperiment_1.22.0
231 231
 ##  [7] Biobase_2.52.0              GenomicRanges_1.44.0