Name Mode Size
..
test_bpparam.R 100644 3 kb
test_get_design.R 100644 1 kb
test_get_norm.R 100644 6 kb
test_hdf5.R 100644 3 kb
test_norm.R 100644 2 kb
test_s4.R 100644 1 kb
test_scone.R 100644 13 kb
test_select_methods.R 100644 2 kb
README.md
## SCONE ## [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/YosefLab/scone.svg?branch=master)](https://travis-ci.org/YosefLab/scone) [![Coverage](https://codecov.io/gh/YosefLab/scone/branch/master/graph/badge.svg)](https://codecov.io/gh/YosefLab/scone) ### Single-Cell Overview of Normalized Expression data ### SCONE (Single-Cell Overview of Normalized Expression), a package for single-cell RNA-seq data quality control (QC) and normalization. This data-driven framework uses summaries of expression data to assess the efficacy of normalization workflows. ### Install from Bioconductor ### We recommend installation of the package via bioconductor. ```{r} source("https://bioconductor.org/biocLite.R") biocLite("scone") ``` Note that SCONE is currently in Bioconductor devel and hence requires R-devel (>= 3.4). ### Install from Github ### Usually not recommended. SCONE is under active development. To download the development version of the package, use the `devtools` package. ```{r} library(devtools) install_github("YosefLab/scone") ``` ### Install for R 3.3 ### You can download the latest release of SCONE for R 3.3 [here](https://github.com/YosefLab/scone/releases/tag/v0.99.0).