... | ... |
@@ -1,18 +1,39 @@ |
1 | 1 |
Package: scone |
2 |
-Version: 0.0.2 |
|
2 |
+Version: 0.0.2-9000 |
|
3 | 3 |
Title: Single Cell Overview of Normalized Expression data |
4 |
-Description: scone is a package to compare and rank the performance of different normalization |
|
5 |
- schemes in real single-cell RNA-seq datasets. |
|
4 |
+Description: scone is a package to compare and rank the performance of different normalization schemes in real single-cell RNA-seq datasets. |
|
6 | 5 |
Authors@R: c(person("Michael", "Cole", email = "mbeloc@gmail.com", |
7 | 6 |
role = c("aut", "cre", "cph")), |
8 | 7 |
person("Davide", "Risso", email = "risso.davide@gmail.com", |
9 | 8 |
role = c("aut"))) |
10 | 9 |
Author: Michael Cole [aut, cre, cph] and Davide Risso [aut] |
11 | 10 |
Maintainer: Michael Cole <mbeloc@gmail.com> |
12 |
-Depends: R (>= 3.1), BiocParallel |
|
13 |
-Imports: DESeq, EDASeq, MASS, RUVSeq, aroma.light, class, |
|
14 |
- diptest, edgeR, fpc, gplots, limma, matrixStats, mixtools, scde |
|
15 |
-Date: 02-14-2016 |
|
11 |
+Date: 2016-02-14 |
|
16 | 12 |
License: Artistic-2.0 |
13 |
+Depends: |
|
14 |
+ R (>= 3.1) |
|
15 |
+Imports: |
|
16 |
+ BiocParallel, |
|
17 |
+ clusterCells, |
|
18 |
+ DESeq, |
|
19 |
+ EDASeq, |
|
20 |
+ MASS, |
|
21 |
+ RUVSeq, |
|
22 |
+ aroma.light, |
|
23 |
+ class, |
|
24 |
+ diptest, |
|
25 |
+ edgeR, |
|
26 |
+ fpc, |
|
27 |
+ gplots, |
|
28 |
+ limma, |
|
29 |
+ matrixStats, |
|
30 |
+ mixtools, |
|
31 |
+ scde |
|
32 |
+Suggests: |
|
33 |
+ knitr, |
|
34 |
+ rmarkdown, |
|
35 |
+ testthat |
|
36 |
+VignetteBuilder: knitr |
|
17 | 37 |
LazyLoad: yes |
38 |
+BugReports: https://github.com/epurdom/clusterExperiment/issues |
|
18 | 39 |
RoxygenNote: 5.0.1 |
... | ... |
@@ -31,7 +31,7 @@ loglik_small(parms, Y, Y1, X, W, kx, kw, offsetx, offsetw, linkobj) |
31 | 31 |
This function computes the log-likelihood of a standard regression model |
32 | 32 |
} |
33 | 33 |
\details{ |
34 |
-This is a (hopefully) memory-efficient implementation of the log-likelihood of a |
|
34 |
+This is a (hopefully) memory-efficient implementation of the log-likelihood of a |
|
35 | 35 |
zero-inflated negative binomial regression model. |
36 | 36 |
In this attempt, the design matrices don't have n*J rows, but n and J, respectively. |
37 | 37 |
The computation is a bit slower, but the memory usage should be much smaller for |
... | ... |
@@ -22,16 +22,16 @@ If NULL, weighted PCA is used for projection} |
22 | 22 |
\item{weights}{matrix. A numeric data matrix to be used for weighted PCA (genes in rows, cells in columns). |
23 | 23 |
If NULL, regular PCA is used for projection} |
24 | 24 |
|
25 |
-\item{seed}{numeric. Random seed, passed to bwpca. |
|
25 |
+\item{seed}{numeric. Random seed, passed to bwpca. |
|
26 | 26 |
Ignored if is.null(weights) or !is.null(proj).} |
27 | 27 |
|
28 |
-\item{em.maxiter}{numeric. Maximum EM iterations, passed to bwpca. |
|
28 |
+\item{em.maxiter}{numeric. Maximum EM iterations, passed to bwpca. |
|
29 | 29 |
Ignored if is.null(weights) or !is.null(proj).} |
30 | 30 |
|
31 | 31 |
\item{eval_knn}{numeric. The number of nearest neighbors to use for evaluation. |
32 | 32 |
If NULL, all KNN concordances will be returned NA.} |
33 | 33 |
|
34 |
-\item{eval_kclust}{numeric. The number of clusters (> 1) to be used for pam tightness and stability evaluation. |
|
34 |
+\item{eval_kclust}{numeric. The number of clusters (> 1) to be used for pam tightness and stability evaluation. |
|
35 | 35 |
If an array of integers, largest average silhoutte width (tightness) / maximum co-clustering compactness (stability) will be reported. If NULL, tightness and stability will be returned NA.} |
36 | 36 |
|
37 | 37 |
\item{bio}{factor. The biological condition (variation to be preserved), NA is allowed. |
... | ... |
@@ -54,7 +54,7 @@ If NULL, wv correlations will be returned NA.} |
54 | 54 |
|
55 | 55 |
\item{is_log}{logical. If TRUE the expr matrix is already logged and log transformation will not be carried out.} |
56 | 56 |
|
57 |
-\item{conditional_pam}{logical. If TRUE then maximum ASW is separately computed for each biological condition (including NA), |
|
57 |
+\item{conditional_pam}{logical. If TRUE then maximum ASW is separately computed for each biological condition (including NA), |
|
58 | 58 |
and a weighted average is returned.} |
59 | 59 |
} |
60 | 60 |
\value{ |
... | ... |
@@ -71,7 +71,7 @@ A list with the following elements: |
71 | 71 |
} |
72 | 72 |
} |
73 | 73 |
\description{ |
74 |
-This function evaluates an expression matrix using SCONE criteria, producing a number of scores based on |
|
74 |
+This function evaluates an expression matrix using SCONE criteria, producing a number of scores based on |
|
75 | 75 |
weighted (or unweighted) projections of the normalized data. |
76 | 76 |
} |
77 | 77 |
\details{ |