... | ... |
@@ -4,6 +4,7 @@ export(DESEQ_FN) |
4 | 4 |
export(DESEQ_FN_POS) |
5 | 5 |
export(FQT_FN) |
6 | 6 |
export(FQ_FN) |
7 |
+export(SconeExperiment) |
|
7 | 8 |
export(TMM_FN) |
8 | 9 |
export(UQ_FN) |
9 | 10 |
export(UQ_FN_POS) |
... | ... |
@@ -16,19 +17,24 @@ export(impute_null) |
16 | 17 |
export(lm_adjust) |
17 | 18 |
export(make_design) |
18 | 19 |
export(metric_sample_filter) |
19 |
-export(sconeExperiment) |
|
20 | 20 |
export(sconeReport) |
21 | 21 |
export(scone_easybake) |
22 | 22 |
export(score_matrix) |
23 | 23 |
export(simple_FNR_params) |
24 | 24 |
exportClasses(SconeExperiment) |
25 |
+exportMethods(SconeExperiment) |
|
26 |
+exportMethods(get_batch) |
|
27 |
+exportMethods(get_bio) |
|
25 | 28 |
exportMethods(get_design) |
29 |
+exportMethods(get_negconeval) |
|
30 |
+exportMethods(get_negconruv) |
|
26 | 31 |
exportMethods(get_normalized) |
27 | 32 |
exportMethods(get_params) |
33 |
+exportMethods(get_poscon) |
|
34 |
+exportMethods(get_qc) |
|
28 | 35 |
exportMethods(get_score_ranks) |
29 | 36 |
exportMethods(get_scores) |
30 | 37 |
exportMethods(scone) |
31 |
-exportMethods(sconeExperiment) |
|
32 | 38 |
exportMethods(select_methods) |
33 | 39 |
import(BiocParallel) |
34 | 40 |
import(SummarizedExperiment) |
... | ... |
@@ -6,7 +6,7 @@ |
6 | 6 |
#' batch information, and biological classes of interest (if available). |
7 | 7 |
#' |
8 | 8 |
#' @description The typical way of creating \code{SconeExperiment} objects is |
9 |
-#' via a call to the \code{\link{sconeExperiment}} function or to the |
|
9 |
+#' via a call to the \code{\link{SconeExperiment}} function or to the |
|
10 | 10 |
#' \code{\link{scone}} function. If the object is a result to a |
11 | 11 |
#' \code{\link{scone}} call, it will contain the results, e.g., the |
12 | 12 |
#' performance metrics, scores, and normalization workflow comparisons. (See |
... | ... |
@@ -66,6 +66,14 @@ |
66 | 66 |
#' @slot rezero logical. TRUE if \code{\link{scone}} was run with |
67 | 67 |
#' \code{rezero=TRUE}. |
68 | 68 |
#' @slot impute_args list. Arguments passed to all imputation functions. |
69 |
+#' |
|
70 |
+#' @seealso \code{\link{get_normalized}}, \code{\link{get_params}}, |
|
71 |
+#' \code{\link{get_batch}}, \code{\link{get_bio}}, \code{\link{get_design}}, |
|
72 |
+#' \code{\link{get_negconeval}}, \code{\link{get_negconruv}}, |
|
73 |
+#' \code{\link{get_poscon}}, \code{\link{get_qc}}, |
|
74 |
+#' \code{\link{get_scores}}, and \code{\link{get_score_ranks}} |
|
75 |
+#' to access internal fields, \code{\link{select_methods}} for subsetting |
|
76 |
+#' by method, and \code{\link{scone}} for running scone workflows. |
|
69 | 77 |
#' |
70 | 78 |
setClass( |
71 | 79 |
Class = "SconeExperiment", |
... | ... |
@@ -140,38 +148,38 @@ setValidity("SconeExperiment", function(object) { |
140 | 148 |
|
141 | 149 |
## check that all QC columns are numeric |
142 | 150 |
if(length(object@which_qc) > 0) { |
143 |
- if(any(lapply(colData(object)[,object@which_qc], class) != "numeric")) { |
|
151 |
+ if(any(lapply(get_qc(object), class) != "numeric")) { |
|
144 | 152 |
return("Only numeric QC metrics are allowed.") |
145 | 153 |
} |
146 | 154 |
} |
147 | 155 |
|
148 | 156 |
## check that bio is a factor |
149 | 157 |
if(length(object@which_bio) > 0) { |
150 |
- if(!is.factor(colData(object)[,object@which_bio])) { |
|
158 |
+ if(!is.factor(get_bio(object))) { |
|
151 | 159 |
return("`bio` must be a factor.") |
152 | 160 |
} |
153 | 161 |
} |
154 | 162 |
|
155 | 163 |
## check that batch is a factor |
156 | 164 |
if(length(object@which_batch) > 0) { |
157 |
- if(!is.factor(colData(object)[,object@which_batch])) { |
|
165 |
+ if(!is.factor(get_batch(object))) { |
|
158 | 166 |
return("`batch` must be a factor.") |
159 | 167 |
} |
160 | 168 |
} |
161 | 169 |
|
162 | 170 |
## check that poscon and negcon are logical |
163 | 171 |
if(length(object@which_negconruv) > 0) { |
164 |
- if(!is.logical(rowData(object)[,object@which_negconruv])) { |
|
172 |
+ if(!is.logical(get_negconruv(object))) { |
|
165 | 173 |
return("`negconruv` must be a logical vector.") |
166 | 174 |
} |
167 | 175 |
} |
168 | 176 |
if(length(object@which_negconeval) > 0) { |
169 |
- if(!is.logical(rowData(object)[,object@which_negconeval])) { |
|
177 |
+ if(!is.logical(get_negconeval(object))) { |
|
170 | 178 |
return("`negconeval` must be a logical vector.") |
171 | 179 |
} |
172 | 180 |
} |
173 | 181 |
if(length(object@which_poscon) > 0) { |
174 |
- if(!is.logical(rowData(object)[,object@which_poscon])) { |
|
182 |
+ if(!is.logical(get_poscon(object))) { |
|
175 | 183 |
return("`poscon` must be a logical vector.") |
176 | 184 |
} |
177 | 185 |
} |
... | ... |
@@ -195,7 +203,7 @@ setValidity("SconeExperiment", function(object) { |
195 | 203 |
|
196 | 204 |
#' @rdname SconeExperiment-class |
197 | 205 |
#' |
198 |
-#' @description The constructor \code{sconeExperiment} creates an object of the |
|
206 |
+#' @description The constructor \code{SconeExperiment} creates an object of the |
|
199 | 207 |
#' class \code{SconeExperiment}. |
200 | 208 |
#' |
201 | 209 |
#' @param object Either a matrix or a \code{\link{SummarizedExperiment}} |
... | ... |
@@ -204,7 +212,7 @@ setValidity("SconeExperiment", function(object) { |
204 | 212 |
#' @export |
205 | 213 |
#' |
206 | 214 |
#' @examples |
207 |
-#' |
|
215 |
+#' set.seed(42) |
|
208 | 216 |
#' nrows <- 200 |
209 | 217 |
#' ncols <- 6 |
210 | 218 |
#' counts <- matrix(rpois(nrows * ncols, lambda=10), nrows) |
... | ... |
@@ -213,15 +221,15 @@ setValidity("SconeExperiment", function(object) { |
213 | 221 |
#' se <- SummarizedExperiment(assays=SimpleList(counts=counts), |
214 | 222 |
#' rowData=rowdata, colData=coldata) |
215 | 223 |
#' |
216 |
-#' scone1 <- sconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
224 |
+#' scone1 <- SconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
217 | 225 |
#' |
218 |
-#' scone2 <- sconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
226 |
+#' scone2 <- SconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
219 | 227 |
#' |
220 | 228 |
#' |
221 | 229 |
setGeneric( |
222 |
- name = "sconeExperiment", |
|
230 |
+ name = "SconeExperiment", |
|
223 | 231 |
def = function(object, ...) { |
224 |
- standardGeneric("sconeExperiment") |
|
232 |
+ standardGeneric("SconeExperiment") |
|
225 | 233 |
} |
226 | 234 |
) |
227 | 235 |
|
... | ... |
@@ -243,7 +251,7 @@ setGeneric( |
243 | 251 |
#' @export |
244 | 252 |
#' |
245 | 253 |
setMethod( |
246 |
- f = "sconeExperiment", |
|
254 |
+ f = "SconeExperiment", |
|
247 | 255 |
signature = signature("SummarizedExperiment"), |
248 | 256 |
definition = function(object, which_qc=integer(), which_bio=integer(), |
249 | 257 |
which_batch=integer(), |
... | ... |
@@ -291,10 +299,10 @@ setMethod( |
291 | 299 |
#' |
292 | 300 |
#' @export |
293 | 301 |
#' |
294 |
-#' @return A \code{\link{sconeExperiment}} object. |
|
302 |
+#' @return A \code{\link{SconeExperiment}} object. |
|
295 | 303 |
#' |
296 | 304 |
setMethod( |
297 |
- f = "sconeExperiment", |
|
305 |
+ f = "SconeExperiment", |
|
298 | 306 |
signature = signature("matrix"), |
299 | 307 |
definition = function(object, qc, bio, batch, |
300 | 308 |
negcon_ruv=NULL, negcon_eval=negcon_ruv, |
... | ... |
@@ -338,7 +346,7 @@ setMethod( |
338 | 346 |
} |
339 | 347 |
|
340 | 348 |
se <- SummarizedExperiment(object, rowData=rowdata, colData=coldata) |
341 |
- sconeExperiment(se, which_qc, which_bio, which_batch, |
|
349 |
+ SconeExperiment(se, which_qc, which_bio, which_batch, |
|
342 | 350 |
which_negconruv, which_negconeval, which_poscon, is_log) |
343 | 351 |
} |
344 | 352 |
) |
... | ... |
@@ -21,7 +21,7 @@ setGeneric( |
21 | 21 |
#' @details If \code{\link{scone}} was run with \code{return_norm="no"}, this |
22 | 22 |
#' function will compute the normalized matrix on the fly. |
23 | 23 |
#' |
24 |
-#' @param x a \code{\link{sconeExperiment}} object containing the results of |
|
24 |
+#' @param x a \code{\link{SconeExperiment}} object containing the results of |
|
25 | 25 |
#' \code{\link{scone}}. |
26 | 26 |
#' @param method character or numeric. Either a string identifying the |
27 | 27 |
#' normalization scheme to be retrieved, or a numeric index with the rank of |
... | ... |
@@ -32,13 +32,14 @@ setGeneric( |
32 | 32 |
#' @return A matrix of normalized counts in log-scale. |
33 | 33 |
#' |
34 | 34 |
#' @examples |
35 |
+#' set.seed(42) |
|
35 | 36 |
#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
36 | 37 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
37 |
-#' obj <- sconeExperiment(mat) |
|
38 |
-#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
38 |
+#' obj <- SconeExperiment(mat) |
|
39 |
+#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
39 | 40 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, |
40 | 41 |
#' eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
41 |
-#' norm = get_normalized(res,1) |
|
42 |
+#' top_norm = get_normalized(res,1) |
|
42 | 43 |
#' |
43 | 44 |
#' |
44 | 45 |
setGeneric( |
... | ... |
@@ -53,7 +54,7 @@ setGeneric( |
53 | 54 |
#' Given a \code{SconeExperiment} object created by a call to scone, it will |
54 | 55 |
#' return the design matrix of the selected method. |
55 | 56 |
#' |
56 |
-#' @param x a \code{\link{sconeExperiment}} object containing the results of |
|
57 |
+#' @param x a \code{\link{SconeExperiment}} object containing the results of |
|
57 | 58 |
#' \code{\link{scone}}. |
58 | 59 |
#' @param method character or numeric. Either a string identifying the |
59 | 60 |
#' normalization scheme to be retrieved, or a numeric index with the rank of |
... | ... |
@@ -63,13 +64,16 @@ setGeneric( |
63 | 64 |
#' @return The design matrix. |
64 | 65 |
#' |
65 | 66 |
#' @examples |
67 |
+#' set.seed(42) |
|
66 | 68 |
#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
67 | 69 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
68 |
-#' obj <- sconeExperiment(mat) |
|
69 |
-#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
70 |
+#' obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)), |
|
71 |
+#' batch = factor(rep(c(1,2),times = 5))) |
|
72 |
+#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
70 | 73 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, |
74 |
+#' adjust_batch = "yes", adjust_bio = "yes", |
|
71 | 75 |
#' eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
72 |
-#' null_design = get_design(res,1) |
|
76 |
+#' design_top = get_design(res,1) |
|
73 | 77 |
#' |
74 | 78 |
setGeneric( |
75 | 79 |
name = "get_design", |
... | ... |
@@ -95,10 +99,11 @@ setGeneric( |
95 | 99 |
#' @return A \code{SconeExperiment} object with selected method data. |
96 | 100 |
#' |
97 | 101 |
#' @examples |
102 |
+#' set.seed(42) |
|
98 | 103 |
#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
99 | 104 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
100 |
-#' obj <- sconeExperiment(mat) |
|
101 |
-#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
105 |
+#' obj <- SconeExperiment(mat) |
|
106 |
+#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
102 | 107 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, |
103 | 108 |
#' eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
104 | 109 |
#' select_res = select_methods(res,1:2) |
... | ... |
@@ -114,6 +119,18 @@ setGeneric( |
114 | 119 |
#' |
115 | 120 |
#' @aliases get_negconeval get_poscon get_negconruv,SconeExperiment-method |
116 | 121 |
#' get_negconeval,SconeExperiment-method get_poscon,SconeExperiment-method |
122 |
+#' |
|
123 |
+#' @examples |
|
124 |
+#' set.seed(42) |
|
125 |
+#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
126 |
+#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
127 |
+#' obj <- SconeExperiment(mat,negcon_ruv = 1:50 %in% 1:10, |
|
128 |
+#' negcon_eval = 1:50 %in% 11:20, |
|
129 |
+#' poscon = 1:50 %in% 21:30) |
|
130 |
+#' negcon_ruv = get_negconruv(obj) |
|
131 |
+#' negcon_eval = get_negconeval(obj) |
|
132 |
+#' poscon = get_poscon(obj) |
|
133 |
+#' |
|
117 | 134 |
setGeneric( |
118 | 135 |
name = "get_negconruv", |
119 | 136 |
def = function(x) { |
... | ... |
@@ -139,6 +156,14 @@ setGeneric( |
139 | 156 |
|
140 | 157 |
#' Get Quality Control Matrix |
141 | 158 |
#' |
159 |
+#' @examples |
|
160 |
+#' set.seed(42) |
|
161 |
+#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
162 |
+#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
163 |
+#' obj <- SconeExperiment(mat, |
|
164 |
+#' qc = cbind(colSums(mat),colSums(mat > 0))) |
|
165 |
+#' qc = get_qc(obj) |
|
166 |
+#' |
|
142 | 167 |
#' @aliases get_qc,SconeExperiment-method |
143 | 168 |
setGeneric( |
144 | 169 |
name = "get_qc", |
... | ... |
@@ -149,8 +174,18 @@ setGeneric( |
149 | 174 |
|
150 | 175 |
#' Get Factor of Biological Conditions and Batch |
151 | 176 |
#' |
152 |
-#' @aliases get_batch get_bio,SconeExperiment-method |
|
177 |
+#' @aliases get_bio get_batch get_bio,SconeExperiment-method |
|
153 | 178 |
#' get_batch,SconeExperiment-method |
179 |
+#' |
|
180 |
+#' @examples |
|
181 |
+#' set.seed(42) |
|
182 |
+#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
183 |
+#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
184 |
+#' obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)), |
|
185 |
+#' batch = factor(rep(c(1,2),times = 5))) |
|
186 |
+#' bio = get_bio(obj) |
|
187 |
+#' batch = get_batch(obj) |
|
188 |
+#' |
|
154 | 189 |
setGeneric( |
155 | 190 |
name = "get_bio", |
156 | 191 |
def = function(x) { |
... | ... |
@@ -168,14 +203,15 @@ setGeneric( |
168 | 203 |
|
169 | 204 |
#' Extract scone scores |
170 | 205 |
#' |
171 |
-#' @aliases get_scores get_score,SconeExperiment-method get_score_ranks |
|
206 |
+#' @aliases get_scores get_scores,SconeExperiment-method get_score_ranks |
|
172 | 207 |
#' get_score_ranks,SconeExperiment-method |
173 | 208 |
#' |
174 | 209 |
#' @examples |
210 |
+#' set.seed(42) |
|
175 | 211 |
#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
176 | 212 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
177 |
-#' obj <- sconeExperiment(mat) |
|
178 |
-#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
213 |
+#' obj <- SconeExperiment(mat) |
|
214 |
+#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
179 | 215 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, |
180 | 216 |
#' eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
181 | 217 |
#' scores = get_scores(res) |
... | ... |
@@ -199,11 +235,13 @@ setGeneric( |
199 | 235 |
#' Extract scone parameters |
200 | 236 |
#' |
201 | 237 |
#' @aliases get_params get_params,SconeExperiment-method |
238 |
+#' |
|
202 | 239 |
#' @examples |
240 |
+#' set.seed(42) |
|
203 | 241 |
#' mat <- matrix(rpois(500, lambda = 5), ncol=10) |
204 | 242 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
205 |
-#' obj <- sconeExperiment(mat) |
|
206 |
-#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
243 |
+#' obj <- SconeExperiment(mat) |
|
244 |
+#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
207 | 245 |
#' run = FALSE, k_ruv=0, k_qc=0, eval_kclust=2) |
208 | 246 |
#' params = get_params(res) |
209 | 247 |
#' |
... | ... |
@@ -7,7 +7,7 @@ |
7 | 7 |
#' in static documents, such as vignettes or markdown / knitr documents. See |
8 | 8 |
#' \code{biplot_color} for more details on the internals. |
9 | 9 |
#' |
10 |
-#' @param x a \code{\link{sconeExperiment}} object. |
|
10 |
+#' @param x a \code{\link{SconeExperiment}} object. |
|
11 | 11 |
#' @param ... passed to \code{\link{biplot_color}}. |
12 | 12 |
#' |
13 | 13 |
#' @importFrom miniUI gadgetTitleBar miniContentPanel miniPage gadgetTitleBar |
... | ... |
@@ -16,13 +16,13 @@ |
16 | 16 |
#' |
17 | 17 |
#' @export |
18 | 18 |
#' |
19 |
-#' @return A \code{\link{sconeExperiment}} object representing |
|
19 |
+#' @return A \code{\link{SconeExperiment}} object representing |
|
20 | 20 |
#' selected methods. |
21 | 21 |
#' |
22 | 22 |
#' @examples |
23 | 23 |
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
24 | 24 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
25 |
-#' obj <- sconeExperiment(mat) |
|
25 |
+#' obj <- SconeExperiment(mat) |
|
26 | 26 |
#' res <- scone(obj, scaling=list(none=identity, |
27 | 27 |
#' uq=UQ_FN, deseq=DESEQ_FN, fq=FQT_FN), |
28 | 28 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
... | ... |
@@ -1,6 +1,6 @@ |
1 | 1 |
#' @rdname get_params |
2 | 2 |
#' |
3 |
-#' @param x an object of class \code{\link{sconeExperiment}}. |
|
3 |
+#' @param x an object of class \code{\link{SconeExperiment}}. |
|
4 | 4 |
#' |
5 | 5 |
#' @return A data.frame containing workflow parameters for each scone workflow. |
6 | 6 |
#' |
... | ... |
@@ -15,7 +15,7 @@ setMethod( |
15 | 15 |
|
16 | 16 |
#' @rdname get_scores |
17 | 17 |
#' |
18 |
-#' @param x an object of class \code{\link{sconeExperiment}}. |
|
18 |
+#' @param x an object of class \code{\link{SconeExperiment}}. |
|
19 | 19 |
#' |
20 | 20 |
#' @return \code{get_scores} returns a matrix with all (non-missing) scone |
21 | 21 |
#' scores, ordered by average score rank. |
... | ... |
@@ -46,12 +46,15 @@ setMethod( |
46 | 46 |
|
47 | 47 |
#' @rdname get_negconruv |
48 | 48 |
#' |
49 |
-#' @param x an object of class \code{\link{sconeExperiment}}. |
|
49 |
+#' @param x an object of class \code{\link{SconeExperiment}}. |
|
50 | 50 |
#' |
51 | 51 |
#' @return NULL or a logical vector. |
52 | 52 |
#' |
53 | 53 |
#' @return For \code{get_negconruv} the returned vector indicates which genes |
54 | 54 |
#' are negative controls to be used for RUV. |
55 |
+#' |
|
56 |
+#' @export |
|
57 |
+#' |
|
55 | 58 |
setMethod( |
56 | 59 |
f = "get_negconruv", |
57 | 60 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -68,6 +71,9 @@ setMethod( |
68 | 71 |
#' |
69 | 72 |
#' @return For \code{get_negconeval} the returned vector indicates which genes |
70 | 73 |
#' are negative controls to be used for evaluation. |
74 |
+#' |
|
75 |
+#' @export |
|
76 |
+#' |
|
71 | 77 |
setMethod( |
72 | 78 |
f = "get_negconeval", |
73 | 79 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -84,6 +90,9 @@ setMethod( |
84 | 90 |
#' |
85 | 91 |
#' @return For \code{get_poscon} the returned vector indicates which genes are |
86 | 92 |
#' positive controls to be used for evaluation. |
93 |
+#' |
|
94 |
+#' @export |
|
95 |
+#' |
|
87 | 96 |
setMethod( |
88 | 97 |
f = "get_poscon", |
89 | 98 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -98,9 +107,12 @@ setMethod( |
98 | 107 |
|
99 | 108 |
#' @rdname get_qc |
100 | 109 |
#' |
101 |
-#' @param x an object of class \code{\link{sconeExperiment}}. |
|
110 |
+#' @param x an object of class \code{\link{SconeExperiment}}. |
|
102 | 111 |
#' |
103 | 112 |
#' @return NULL or the quality control (QC) metric matrix. |
113 |
+#' |
|
114 |
+#' @export |
|
115 |
+#' |
|
104 | 116 |
setMethod( |
105 | 117 |
f = "get_qc", |
106 | 118 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -116,9 +128,12 @@ setMethod( |
116 | 128 |
|
117 | 129 |
#' @rdname get_bio |
118 | 130 |
#' |
119 |
-#' @param x an object of class \code{\link{sconeExperiment}}. |
|
131 |
+#' @param x an object of class \code{\link{SconeExperiment}}. |
|
120 | 132 |
#' |
121 | 133 |
#' @return NULL or a factor containing bio or batch covariate. |
134 |
+#' |
|
135 |
+#' @export |
|
136 |
+#' |
|
122 | 137 |
setMethod( |
123 | 138 |
f = "get_bio", |
124 | 139 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -132,6 +147,9 @@ setMethod( |
132 | 147 |
) |
133 | 148 |
|
134 | 149 |
#' @rdname get_bio |
150 |
+#' |
|
151 |
+#' @export |
|
152 |
+#' |
|
135 | 153 |
setMethod( |
136 | 154 |
f = "get_batch", |
137 | 155 |
signature = signature(x = "SconeExperiment"), |
... | ... |
@@ -38,7 +38,7 @@ |
38 | 38 |
#' set.seed(101) |
39 | 39 |
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
40 | 40 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
41 |
-#' obj <- sconeExperiment(mat) |
|
41 |
+#' obj <- SconeExperiment(mat) |
|
42 | 42 |
#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
43 | 43 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
44 | 44 |
#' bpparam = BiocParallel::SerialParam()) |
... | ... |
@@ -121,7 +121,7 @@ |
121 | 121 |
#' @examples |
122 | 122 |
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
123 | 123 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
124 |
-#' obj <- sconeExperiment(mat) |
|
124 |
+#' obj <- SconeExperiment(mat) |
|
125 | 125 |
#' no_results <- scone(obj, scaling=list(none=identity, |
126 | 126 |
#' uq=UQ_FN, deseq=DESEQ_FN), |
127 | 127 |
#' run=FALSE, k_ruv=0, k_qc=0, eval_kclust=2) |
... | ... |
@@ -92,7 +92,7 @@ |
92 | 92 |
#' set.seed(101) |
93 | 93 |
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
94 | 94 |
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
95 |
-#' obj <- sconeExperiment(mat) |
|
95 |
+#' obj <- SconeExperiment(mat) |
|
96 | 96 |
#' res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
97 | 97 |
#' evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
98 | 98 |
#' bpparam = BiocParallel::SerialParam()) |
... | ... |
@@ -420,7 +420,7 @@ scone_easybake <- function(expr, qc, |
420 | 420 |
args_list = c( args_list, list( batch = batch )) |
421 | 421 |
} |
422 | 422 |
|
423 |
- my_scone <- do.call(sconeExperiment,args_list) |
|
423 |
+ my_scone <- do.call(SconeExperiment,args_list) |
|
424 | 424 |
|
425 | 425 |
my_scone <- scone(my_scone, |
426 | 426 |
imputation = imputation, impute_args = impute_args, |
... | ... |
@@ -3,20 +3,19 @@ |
3 | 3 |
\docType{class} |
4 | 4 |
\name{SconeExperiment-class} |
5 | 5 |
\alias{SconeExperiment} |
6 |
+\alias{SconeExperiment,SummarizedExperiment-method} |
|
7 |
+\alias{SconeExperiment,matrix-method} |
|
6 | 8 |
\alias{SconeExperiment-class} |
7 |
-\alias{sconeExperiment} |
|
8 |
-\alias{sconeExperiment,SummarizedExperiment-method} |
|
9 |
-\alias{sconeExperiment,matrix-method} |
|
10 | 9 |
\title{Class SconeExperiment} |
11 | 10 |
\usage{ |
12 |
-sconeExperiment(object, ...) |
|
11 |
+SconeExperiment(object, ...) |
|
13 | 12 |
|
14 |
-\S4method{sconeExperiment}{SummarizedExperiment}(object, which_qc = integer(), |
|
13 |
+\S4method{SconeExperiment}{SummarizedExperiment}(object, which_qc = integer(), |
|
15 | 14 |
which_bio = integer(), which_batch = integer(), |
16 | 15 |
which_negconruv = integer(), which_negconeval = integer(), |
17 | 16 |
which_poscon = integer(), is_log = FALSE) |
18 | 17 |
|
19 |
-\S4method{sconeExperiment}{matrix}(object, qc, bio, batch, negcon_ruv = NULL, |
|
18 |
+\S4method{SconeExperiment}{matrix}(object, qc, bio, batch, negcon_ruv = NULL, |
|
20 | 19 |
negcon_eval = negcon_ruv, poscon = NULL, is_log = FALSE) |
21 | 20 |
} |
22 | 21 |
\arguments{ |
... | ... |
@@ -61,7 +60,7 @@ negative controls for evaluation.} |
61 | 60 |
controls.} |
62 | 61 |
} |
63 | 62 |
\value{ |
64 |
-A \code{\link{sconeExperiment}} object. |
|
63 |
+A \code{\link{SconeExperiment}} object. |
|
65 | 64 |
} |
66 | 65 |
\description{ |
67 | 66 |
Objects of this class store, at minimum, a gene expression |
... | ... |
@@ -70,7 +69,7 @@ Objects of this class store, at minimum, a gene expression |
70 | 69 |
batch information, and biological classes of interest (if available). |
71 | 70 |
|
72 | 71 |
The typical way of creating \code{SconeExperiment} objects is |
73 |
- via a call to the \code{\link{sconeExperiment}} function or to the |
|
72 |
+ via a call to the \code{\link{SconeExperiment}} function or to the |
|
74 | 73 |
\code{\link{scone}} function. If the object is a result to a |
75 | 74 |
\code{\link{scone}} call, it will contain the results, e.g., the |
76 | 75 |
performance metrics, scores, and normalization workflow comparisons. (See |
... | ... |
@@ -79,7 +78,7 @@ The typical way of creating \code{SconeExperiment} objects is |
79 | 78 |
This object extends the |
80 | 79 |
\code{\linkS4class{SummarizedExperiment}} class. |
81 | 80 |
|
82 |
-The constructor \code{sconeExperiment} creates an object of the |
|
81 |
+The constructor \code{SconeExperiment} creates an object of the |
|
83 | 82 |
class \code{SconeExperiment}. |
84 | 83 |
} |
85 | 84 |
\details{ |
... | ... |
@@ -146,7 +145,7 @@ run and in which mode ("no", "in_memory", "hdf5").} |
146 | 145 |
\item{\code{impute_args}}{list. Arguments passed to all imputation functions.} |
147 | 146 |
}} |
148 | 147 |
\examples{ |
149 |
- |
|
148 |
+set.seed(42) |
|
150 | 149 |
nrows <- 200 |
151 | 150 |
ncols <- 6 |
152 | 151 |
counts <- matrix(rpois(nrows * ncols, lambda=10), nrows) |
... | ... |
@@ -155,10 +154,19 @@ coldata <- data.frame(bio=gl(2, 3)) |
155 | 154 |
se <- SummarizedExperiment(assays=SimpleList(counts=counts), |
156 | 155 |
rowData=rowdata, colData=coldata) |
157 | 156 |
|
158 |
-scone1 <- sconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
157 |
+scone1 <- SconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
159 | 158 |
|
160 |
-scone2 <- sconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
159 |
+scone2 <- SconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
161 | 160 |
|
162 | 161 |
|
163 | 162 |
} |
163 |
+\seealso{ |
|
164 |
+\code{\link{get_normalized}}, \code{\link{get_params}}, |
|
165 |
+\code{\link{get_batch}}, \code{\link{get_bio}}, \code{\link{get_design}}, |
|
166 |
+\code{\link{get_negconeval}}, \code{\link{get_negconruv}}, |
|
167 |
+\code{\link{get_poscon}}, \code{\link{get_qc}}, |
|
168 |
+\code{\link{get_scores}}, and \code{\link{get_score_ranks}} |
|
169 |
+to access internal fields, \code{\link{select_methods}} for subsetting |
|
170 |
+by method, and \code{\link{scone}} for running scone workflows. |
|
171 |
+} |
|
164 | 172 |
|
... | ... |
@@ -7,12 +7,12 @@ |
7 | 7 |
biplot_interactive(x, ...) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{x}{a \code{\link{sconeExperiment}} object.} |
|
10 |
+\item{x}{a \code{\link{SconeExperiment}} object.} |
|
11 | 11 |
|
12 | 12 |
\item{...}{passed to \code{\link{biplot_color}}.} |
13 | 13 |
} |
14 | 14 |
\value{ |
15 |
-A \code{\link{sconeExperiment}} object representing |
|
15 |
+A \code{\link{SconeExperiment}} object representing |
|
16 | 16 |
selected methods. |
17 | 17 |
} |
18 | 18 |
\description{ |
... | ... |
@@ -27,7 +27,7 @@ Since this is based on the shiny gadget feature, it will not work |
27 | 27 |
\examples{ |
28 | 28 |
mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
29 | 29 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
30 |
-obj <- sconeExperiment(mat) |
|
30 |
+obj <- SconeExperiment(mat) |
|
31 | 31 |
res <- scone(obj, scaling=list(none=identity, |
32 | 32 |
uq=UQ_FN, deseq=DESEQ_FN, fq=FQT_FN), |
33 | 33 |
evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
... | ... |
@@ -17,7 +17,7 @@ get_batch(x) |
17 | 17 |
\S4method{get_batch}{SconeExperiment}(x) |
18 | 18 |
} |
19 | 19 |
\arguments{ |
20 |
-\item{x}{an object of class \code{\link{sconeExperiment}}.} |
|
20 |
+\item{x}{an object of class \code{\link{SconeExperiment}}.} |
|
21 | 21 |
} |
22 | 22 |
\value{ |
23 | 23 |
NULL or a factor containing bio or batch covariate. |
... | ... |
@@ -25,4 +25,14 @@ NULL or a factor containing bio or batch covariate. |
25 | 25 |
\description{ |
26 | 26 |
Get Factor of Biological Conditions and Batch |
27 | 27 |
} |
28 |
+\examples{ |
|
29 |
+set.seed(42) |
|
30 |
+mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
31 |
+colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
32 |
+obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)), |
|
33 |
+ batch = factor(rep(c(1,2),times = 5))) |
|
34 |
+bio = get_bio(obj) |
|
35 |
+batch = get_batch(obj) |
|
36 |
+ |
|
37 |
+} |
|
28 | 38 |
|
... | ... |
@@ -14,7 +14,7 @@ get_design(x, method) |
14 | 14 |
\S4method{get_design}{SconeExperiment,numeric}(x, method) |
15 | 15 |
} |
16 | 16 |
\arguments{ |
17 |
-\item{x}{a \code{\link{sconeExperiment}} object containing the results of |
|
17 |
+\item{x}{a \code{\link{SconeExperiment}} object containing the results of |
|
18 | 18 |
\code{\link{scone}}.} |
19 | 19 |
|
20 | 20 |
\item{method}{character or numeric. Either a string identifying the |
... | ... |
@@ -51,13 +51,16 @@ by the character string. The string must be one of the |
51 | 51 |
according to the scone ranking. |
52 | 52 |
}} |
53 | 53 |
\examples{ |
54 |
+set.seed(42) |
|
54 | 55 |
mat <- matrix(rpois(500, lambda = 5), ncol=10) |
55 | 56 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
56 |
-obj <- sconeExperiment(mat) |
|
57 |
-res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
57 |
+obj <- SconeExperiment(mat, bio = factor(rep(c(1,2),each = 5)), |
|
58 |
+ batch = factor(rep(c(1,2),times = 5))) |
|
59 |
+res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
58 | 60 |
evaluate=TRUE, k_ruv=0, k_qc=0, |
61 |
+ adjust_batch = "yes", adjust_bio = "yes", |
|
59 | 62 |
eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
60 |
-null_design = get_design(res,1) |
|
63 |
+design_top = get_design(res,1) |
|
61 | 64 |
|
62 | 65 |
} |
63 | 66 |
|
... | ... |
@@ -23,7 +23,7 @@ get_poscon(x) |
23 | 23 |
\S4method{get_poscon}{SconeExperiment}(x) |
24 | 24 |
} |
25 | 25 |
\arguments{ |
26 |
-\item{x}{an object of class \code{\link{sconeExperiment}}.} |
|
26 |
+\item{x}{an object of class \code{\link{SconeExperiment}}.} |
|
27 | 27 |
} |
28 | 28 |
\value{ |
29 | 29 |
NULL or a logical vector. |
... | ... |
@@ -40,4 +40,16 @@ For \code{get_poscon} the returned vector indicates which genes are |
40 | 40 |
\description{ |
41 | 41 |
Get Negative and Positive Controls |
42 | 42 |
} |
43 |
+\examples{ |
|
44 |
+set.seed(42) |
|
45 |
+mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
46 |
+colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
47 |
+obj <- SconeExperiment(mat,negcon_ruv = 1:50 \%in\% 1:10, |
|
48 |
+ negcon_eval = 1:50 \%in\% 11:20, |
|
49 |
+ poscon = 1:50 \%in\% 21:30) |
|
50 |
+negcon_ruv = get_negconruv(obj) |
|
51 |
+negcon_eval = get_negconeval(obj) |
|
52 |
+poscon = get_poscon(obj) |
|
53 |
+ |
|
54 |
+} |
|
43 | 55 |
|
... | ... |
@@ -14,7 +14,7 @@ get_normalized(x, method, ...) |
14 | 14 |
\S4method{get_normalized}{SconeExperiment,numeric}(x, method, log = FALSE) |
15 | 15 |
} |
16 | 16 |
\arguments{ |
17 |
-\item{x}{a \code{\link{sconeExperiment}} object containing the results of |
|
17 |
+\item{x}{a \code{\link{SconeExperiment}} object containing the results of |
|
18 | 18 |
\code{\link{scone}}.} |
19 | 19 |
|
20 | 20 |
\item{method}{character or numeric. Either a string identifying the |
... | ... |
@@ -65,13 +65,14 @@ by the character string.The string must be one of the |
65 | 65 |
matrix according to the scone ranking. |
66 | 66 |
}} |
67 | 67 |
\examples{ |
68 |
+set.seed(42) |
|
68 | 69 |
mat <- matrix(rpois(500, lambda = 5), ncol=10) |
69 | 70 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
70 |
-obj <- sconeExperiment(mat) |
|
71 |
-res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
71 |
+obj <- SconeExperiment(mat) |
|
72 |
+res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
72 | 73 |
evaluate=TRUE, k_ruv=0, k_qc=0, |
73 | 74 |
eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
74 |
-norm = get_normalized(res,1) |
|
75 |
+top_norm = get_normalized(res,1) |
|
75 | 76 |
|
76 | 77 |
|
77 | 78 |
} |
... | ... |
@@ -11,7 +11,7 @@ get_params(x) |
11 | 11 |
\S4method{get_params}{SconeExperiment}(x) |
12 | 12 |
} |
13 | 13 |
\arguments{ |
14 |
-\item{x}{an object of class \code{\link{sconeExperiment}}.} |
|
14 |
+\item{x}{an object of class \code{\link{SconeExperiment}}.} |
|
15 | 15 |
} |
16 | 16 |
\value{ |
17 | 17 |
A data.frame containing workflow parameters for each scone workflow. |
... | ... |
@@ -20,10 +20,11 @@ A data.frame containing workflow parameters for each scone workflow. |
20 | 20 |
Extract scone parameters |
21 | 21 |
} |
22 | 22 |
\examples{ |
23 |
+set.seed(42) |
|
23 | 24 |
mat <- matrix(rpois(500, lambda = 5), ncol=10) |
24 | 25 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
25 |
-obj <- sconeExperiment(mat) |
|
26 |
-res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
26 |
+obj <- SconeExperiment(mat) |
|
27 |
+res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
27 | 28 |
run = FALSE, k_ruv=0, k_qc=0, eval_kclust=2) |
28 | 29 |
params = get_params(res) |
29 | 30 |
|
... | ... |
@@ -11,7 +11,7 @@ get_qc(x) |
11 | 11 |
\S4method{get_qc}{SconeExperiment}(x) |
12 | 12 |
} |
13 | 13 |
\arguments{ |
14 |
-\item{x}{an object of class \code{\link{sconeExperiment}}.} |
|
14 |
+\item{x}{an object of class \code{\link{SconeExperiment}}.} |
|
15 | 15 |
} |
16 | 16 |
\value{ |
17 | 17 |
NULL or the quality control (QC) metric matrix. |
... | ... |
@@ -19,4 +19,13 @@ NULL or the quality control (QC) metric matrix. |
19 | 19 |
\description{ |
20 | 20 |
Get Quality Control Matrix |
21 | 21 |
} |
22 |
+\examples{ |
|
23 |
+set.seed(42) |
|
24 |
+mat <- matrix(rpois(500, lambda = 5), ncol=10) |
|
25 |
+colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
|
26 |
+obj <- SconeExperiment(mat, |
|
27 |
+ qc = cbind(colSums(mat),colSums(mat > 0))) |
|
28 |
+qc = get_qc(obj) |
|
29 |
+ |
|
30 |
+} |
|
22 | 31 |
|
... | ... |
@@ -2,7 +2,6 @@ |
2 | 2 |
% Please edit documentation in R/AllGenerics.R, R/helper.R |
3 | 3 |
\docType{methods} |
4 | 4 |
\name{get_scores} |
5 |
-\alias{get_score,SconeExperiment-method} |
|
6 | 5 |
\alias{get_score_ranks} |
7 | 6 |
\alias{get_score_ranks,SconeExperiment-method} |
8 | 7 |
\alias{get_scores} |
... | ... |
@@ -18,7 +17,7 @@ get_score_ranks(x) |
18 | 17 |
\S4method{get_score_ranks}{SconeExperiment}(x) |
19 | 18 |
} |
20 | 19 |
\arguments{ |
21 |
-\item{x}{an object of class \code{\link{sconeExperiment}}.} |
|
20 |
+\item{x}{an object of class \code{\link{SconeExperiment}}.} |
|
22 | 21 |
} |
23 | 22 |
\value{ |
24 | 23 |
\code{get_scores} returns a matrix with all (non-missing) scone |
... | ... |
@@ -30,10 +29,11 @@ get_score_ranks(x) |
30 | 29 |
Extract scone scores |
31 | 30 |
} |
32 | 31 |
\examples{ |
32 |
+set.seed(42) |
|
33 | 33 |
mat <- matrix(rpois(500, lambda = 5), ncol=10) |
34 | 34 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
35 |
-obj <- sconeExperiment(mat) |
|
36 |
-res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
35 |
+obj <- SconeExperiment(mat) |
|
36 |
+res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
37 | 37 |
evaluate=TRUE, k_ruv=0, k_qc=0, |
38 | 38 |
eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
39 | 39 |
scores = get_scores(res) |
... | ... |
@@ -149,7 +149,7 @@ In all cases, the normalized matrices can be retrieved via the |
149 | 149 |
\examples{ |
150 | 150 |
mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
151 | 151 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
152 |
-obj <- sconeExperiment(mat) |
|
152 |
+obj <- SconeExperiment(mat) |
|
153 | 153 |
no_results <- scone(obj, scaling=list(none=identity, |
154 | 154 |
uq=UQ_FN, deseq=DESEQ_FN), |
155 | 155 |
run=FALSE, k_ruv=0, k_qc=0, eval_kclust=2) |
... | ... |
@@ -39,7 +39,7 @@ of a variety of normalization schemes. |
39 | 39 |
set.seed(101) |
40 | 40 |
mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
41 | 41 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
42 |
-obj <- sconeExperiment(mat) |
|
42 |
+obj <- SconeExperiment(mat) |
|
43 | 43 |
res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
44 | 44 |
evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
45 | 45 |
bpparam = BiocParallel::SerialParam()) |
... | ... |
@@ -128,7 +128,7 @@ Wrapper for Running Essential SCONE Modules |
128 | 128 |
set.seed(101) |
129 | 129 |
mat <- matrix(rpois(1000, lambda = 5), ncol=10) |
130 | 130 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
131 |
-obj <- sconeExperiment(mat) |
|
131 |
+obj <- SconeExperiment(mat) |
|
132 | 132 |
res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
133 | 133 |
evaluate=TRUE, k_ruv=0, k_qc=0, eval_kclust=2, |
134 | 134 |
bpparam = BiocParallel::SerialParam()) |
... | ... |
@@ -52,10 +52,11 @@ string must be a subset of the \code{row.names} of the slot |
52 | 52 |
according to the scone ranking. |
53 | 53 |
}} |
54 | 54 |
\examples{ |
55 |
+set.seed(42) |
|
55 | 56 |
mat <- matrix(rpois(500, lambda = 5), ncol=10) |
56 | 57 |
colnames(mat) <- paste("X", 1:ncol(mat), sep="") |
57 |
-obj <- sconeExperiment(mat) |
|
58 |
-res <- scone(obj, scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
|
58 |
+obj <- SconeExperiment(mat) |
|
59 |
+res <- scone(obj, scaling=list(none=identity, uq=UQ_FN), |
|
59 | 60 |
evaluate=TRUE, k_ruv=0, k_qc=0, |
60 | 61 |
eval_kclust=2, bpparam = BiocParallel::SerialParam()) |
61 | 62 |
select_res = select_methods(res,1:2) |
... | ... |
@@ -11,7 +11,7 @@ test_that("all back-ends work", { |
11 | 11 |
|
12 | 12 |
negcon_ruv <- c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)) |
13 | 13 |
|
14 |
- obj <- sconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
14 |
+ obj <- SconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
15 | 15 |
|
16 | 16 |
# serial |
17 | 17 |
res1 <- scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -10,7 +10,7 @@ test_that("get_normalized works in all three modes", { |
10 | 10 |
bio <- gl(2, 5) |
11 | 11 |
batch <- as.factor(rep(1:2, 5)) |
12 | 12 |
|
13 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
13 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
14 | 14 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
15 | 15 |
bio = as.factor(bio), batch=as.factor(batch)) |
16 | 16 |
|
... | ... |
@@ -10,7 +10,7 @@ test_that("get_normalized works in all three modes", { |
10 | 10 |
bio <- gl(2, 5) |
11 | 11 |
batch <- as.factor(rep(1:2, 5)) |
12 | 12 |
|
13 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
13 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
14 | 14 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
15 | 15 |
bio = as.factor(bio), batch=as.factor(batch)) |
16 | 16 |
|
... | ... |
@@ -68,7 +68,7 @@ test_that("get_normalized works in all three modes with nested model", { |
68 | 68 |
bio <- gl(2, 5) |
69 | 69 |
batch <- as.factor(c(1,2,1,2,1,3,4,3,4,3)) |
70 | 70 |
|
71 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
71 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
72 | 72 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
73 | 73 |
bio = as.factor(bio), batch=as.factor(batch)) |
74 | 74 |
|
... | ... |
@@ -129,7 +129,7 @@ test_that("get_normalized works with rezero", { |
129 | 129 |
bio <- gl(2, 5) |
130 | 130 |
batch <- as.factor(rep(1:2, 5)) |
131 | 131 |
|
132 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
132 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
133 | 133 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
134 | 134 |
bio = as.factor(bio), batch=as.factor(batch)) |
135 | 135 |
|
... | ... |
@@ -12,7 +12,7 @@ test_that("hd5 checks", { |
12 | 12 |
batch <- as.factor(rep(1:2, 5)) |
13 | 13 |
negcon_ruv <- c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)) |
14 | 14 |
|
15 |
- obj <- sconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
15 |
+ obj <- SconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
16 | 16 |
|
17 | 17 |
# factorial |
18 | 18 |
expect_error(scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -38,7 +38,7 @@ test_that("return_norm in memory", { |
38 | 38 |
|
39 | 39 |
negcon_ruv <- c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)) |
40 | 40 |
|
41 |
- obj <- sconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
41 |
+ obj <- SconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
42 | 42 |
|
43 | 43 |
# factorial |
44 | 44 |
res <- scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -59,7 +59,7 @@ test_that("do not return_norm", { |
59 | 59 |
|
60 | 60 |
negcon_ruv <- c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)) |
61 | 61 |
|
62 |
- obj <- sconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
62 |
+ obj <- SconeExperiment(e, bio=bio, batch=batch, qc=qc_mat, negcon_ruv=negcon_ruv) |
|
63 | 63 |
|
64 | 64 |
# factorial |
65 | 65 |
res <- scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -8,7 +8,7 @@ test_that("Upper-quartile normalization works the same as in the EDASeq package" |
8 | 8 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
9 | 9 |
|
10 | 10 |
negcon_ruv <- c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)) |
11 |
- obj <- sconeExperiment(e, negcon_ruv=negcon_ruv) |
|
11 |
+ obj <- SconeExperiment(e, negcon_ruv=negcon_ruv) |
|
12 | 12 |
|
13 | 13 |
# UQ + RUV |
14 | 14 |
|
... | ... |
@@ -26,7 +26,7 @@ test_that("Upper-quartile normalization works the same as in the EDASeq package" |
26 | 26 |
|
27 | 27 |
# UQ + QC |
28 | 28 |
qc_mat <- matrix(rnorm(20), nrow=10) |
29 |
- obj <- sconeExperiment(e, negcon_ruv=negcon_ruv, qc=qc_mat) |
|
29 |
+ obj <- SconeExperiment(e, negcon_ruv=negcon_ruv, qc=qc_mat) |
|
30 | 30 |
|
31 | 31 |
res <- scone(obj, imputation=impute_null, scaling=UQ_FN, k_ruv=0, k_qc=2, |
32 | 32 |
evaluate=FALSE, run=TRUE, return_norm = "in_memory") |
... | ... |
@@ -10,10 +10,10 @@ se <- SummarizedExperiment(assays=SimpleList(counts=counts), |
10 | 10 |
rowData=rowdata, colData=coldata) |
11 | 11 |
|
12 | 12 |
test_that("The two constructors are equivalent", { |
13 |
- expect_equal(sconeExperiment(assay(se)), sconeExperiment(assay(se))) |
|
13 |
+ expect_equal(SconeExperiment(assay(se)), SconeExperiment(assay(se))) |
|
14 | 14 |
|
15 |
- scone1 <- sconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
16 |
- scone2 <- sconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
15 |
+ scone1 <- SconeExperiment(assay(se), bio=coldata$bio, poscon=rowdata$poscon) |
|
16 |
+ scone2 <- SconeExperiment(se, which_bio=1L, which_poscon=1L) |
|
17 | 17 |
|
18 | 18 |
expect_equal(scone1, scone2) |
19 | 19 |
} |
... | ... |
@@ -6,7 +6,7 @@ test_that("Test with no real method (only identity)", { |
6 | 6 |
e <- matrix(rpois(10000, lambda = 5), ncol=10) |
7 | 7 |
rownames(e) <- as.character(1:nrow(e)) |
8 | 8 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
9 |
- obj <- sconeExperiment(e) |
|
9 |
+ obj <- SconeExperiment(e) |
|
10 | 10 |
|
11 | 11 |
# one combination |
12 | 12 |
res <- scone(obj, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, |
... | ... |
@@ -35,7 +35,7 @@ test_that("Test with no real method (only identity)", { |
35 | 35 |
k_ruv=5, k_qc=0, evaluate=FALSE, run=FALSE), |
36 | 36 |
"negative controls must be specified") |
37 | 37 |
|
38 |
- obj <- sconeExperiment(e, negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100))) |
|
38 |
+ obj <- SconeExperiment(e, negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100))) |
|
39 | 39 |
obj <- scone(obj, imputation=list(impute_null,impute_null), |
40 | 40 |
scaling=list(identity, identity, identity), k_ruv=5, |
41 | 41 |
k_qc=0, evaluate=FALSE, run=FALSE) |
... | ... |
@@ -51,7 +51,7 @@ test_that("Test with no real method (only identity)", { |
51 | 51 |
"QC metrics must be specified") |
52 | 52 |
|
53 | 53 |
qc_mat <- matrix(rnorm(20), nrow=10) |
54 |
- obj <- sconeExperiment(e, qc=qc_mat, negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100))) |
|
54 |
+ obj <- SconeExperiment(e, qc=qc_mat, negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100))) |
|
55 | 55 |
|
56 | 56 |
res <- scone(obj, imputation=list(impute_null,impute_null), |
57 | 57 |
scaling=list(identity, identity, identity), k_ruv=5, k_qc=2, |
... | ... |
@@ -65,7 +65,7 @@ test_that("Test with no real method (only identity)", { |
65 | 65 |
k_qc=2, adjust_bio="yes", evaluate=FALSE, run=FALSE), |
66 | 66 |
"if adjust_bio is 'yes' or 'force', 'bio' must be specified") |
67 | 67 |
|
68 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
68 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
69 | 69 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
70 | 70 |
bio = as.factor(bio)) |
71 | 71 |
|
... | ... |
@@ -85,7 +85,7 @@ test_that("Test with no real method (only identity)", { |
85 | 85 |
evaluate=FALSE, run=FALSE), |
86 | 86 |
"if adjust_batch is 'yes' or 'force', 'batch' must be specified") |
87 | 87 |
|
88 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
88 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
89 | 89 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
90 | 90 |
bio = as.factor(bio), batch=as.factor(batch)) |
91 | 91 |
|
... | ... |
@@ -96,7 +96,7 @@ test_that("Test with no real method (only identity)", { |
96 | 96 |
"Biological conditions and batches are confounded") |
97 | 97 |
|
98 | 98 |
batch <- as.factor(rep(1:2, 5)) |
99 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
99 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
100 | 100 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
101 | 101 |
bio = as.factor(bio), batch=as.factor(batch)) |
102 | 102 |
res <- scone(obj, imputation=list(a=impute_null, b=impute_null), |
... | ... |
@@ -121,7 +121,7 @@ test_that("Test imputation and scaling", { |
121 | 121 |
bio <- gl(2, 5) |
122 | 122 |
batch <- as.factor(rep(1:2, 5)) |
123 | 123 |
|
124 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
124 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
125 | 125 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
126 | 126 |
bio = as.factor(bio), batch=as.factor(batch)) |
127 | 127 |
|
... | ... |
@@ -133,7 +133,7 @@ test_that("Test imputation and scaling", { |
133 | 133 |
|
134 | 134 |
# nested |
135 | 135 |
batch <- as.factor(c(1, 2, 1, 2, 1, 3, 4, 3, 4, 3)) |
136 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
136 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
137 | 137 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
138 | 138 |
bio = as.factor(bio), batch=as.factor(batch)) |
139 | 139 |
|
... | ... |
@@ -153,7 +153,7 @@ test_that("Test imputation and scaling", { |
153 | 153 |
ruv_negcon[1:10] <- TRUE |
154 | 154 |
eval_negcon[11:20] <- TRUE |
155 | 155 |
eval_poscon[21:30] <- TRUE |
156 |
- obj <- sconeExperiment(e, qc=qc_mat, negcon_ruv=ruv_negcon, |
|
156 |
+ obj <- SconeExperiment(e, qc=qc_mat, negcon_ruv=ruv_negcon, |
|
157 | 157 |
negcon_eval=eval_negcon, poscon=eval_poscon, |
158 | 158 |
bio=as.factor(bio), batch=as.factor(batch)) |
159 | 159 |
|
... | ... |
@@ -184,7 +184,7 @@ test_that("scone works with only one normalization",{ |
184 | 184 |
e <- matrix(rpois(1000, lambda = 5), ncol=10) |
185 | 185 |
rownames(e) <- as.character(1:nrow(e)) |
186 | 186 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
187 |
- obj <- sconeExperiment(e) |
|
187 |
+ obj <- SconeExperiment(e) |
|
188 | 188 |
|
189 | 189 |
res <- scone(obj, imputation=list(none=impute_null), |
190 | 190 |
scaling=list(none=identity), |
... | ... |
@@ -206,7 +206,7 @@ test_that("conditional PAM",{ |
206 | 206 |
eval_negcon[11:20] <- TRUE |
207 | 207 |
eval_poscon[21:30] <- TRUE |
208 | 208 |
|
209 |
- obj <- sconeExperiment(e, qc=qc_mat, bio=bio, |
|
209 |
+ obj <- SconeExperiment(e, qc=qc_mat, bio=bio, |
|
210 | 210 |
negcon_eval = eval_negcon, poscon=eval_poscon) |
211 | 211 |
|
212 | 212 |
res <- scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -214,7 +214,7 @@ test_that("conditional PAM",{ |
214 | 214 |
k_ruv=0, k_qc=0, adjust_bio="yes", run=FALSE, |
215 | 215 |
evaluate=TRUE, eval_kclust = 2, stratified_pam = TRUE) |
216 | 216 |
|
217 |
- obj <- sconeExperiment(e, qc=qc_mat, bio=bio, batch=batch, |
|
217 |
+ obj <- SconeExperiment(e, qc=qc_mat, bio=bio, batch=batch, |
|
218 | 218 |
negcon_eval = eval_negcon, poscon=eval_poscon) |
219 | 219 |
|
220 | 220 |
expect_error(res <- scone(obj, imputation=list(none=impute_null), |
... | ... |
@@ -223,7 +223,7 @@ test_that("conditional PAM",{ |
223 | 223 |
evaluate=TRUE, eval_kclust = 6, stratified_pam = TRUE), |
224 | 224 |
"For stratified_pam, max 'eval_kclust' must be smaller than bio-cross-batch stratum size") |
225 | 225 |
|
226 |
- obj <- sconeExperiment(e, qc=qc_mat, negcon_eval = eval_negcon, poscon=eval_poscon) |
|
226 |
+ obj <- SconeExperiment(e, qc=qc_mat, negcon_eval = eval_negcon, poscon=eval_poscon) |
|
227 | 227 |
|
228 | 228 |
expect_error(res <- scone(obj, imputation=list(none=impute_null), |
229 | 229 |
scaling=list(none=identity, uq=UQ_FN, deseq=DESEQ_FN), |
... | ... |
@@ -240,8 +240,8 @@ test_that("if bio=no bio is ignored", { |
240 | 240 |
rownames(e) <- as.character(1:nrow(e)) |
241 | 241 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
242 | 242 |
bio <- gl(2, 5) |
243 |
- obj1 <- sconeExperiment(e) |
|
244 |
- obj2 <- sconeExperiment(e, bio=bio) |
|
243 |
+ obj1 <- SconeExperiment(e) |
|
244 |
+ obj2 <- SconeExperiment(e, bio=bio) |
|
245 | 245 |
|
246 | 246 |
res1 <- scone(obj1, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, |
247 | 247 |
adjust_bio = "no", eval_kclust = 3, return_norm = "in_memory") |
... | ... |
@@ -257,8 +257,8 @@ test_that("if batch=no batch is ignored", { |
257 | 257 |
rownames(e) <- as.character(1:nrow(e)) |
258 | 258 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
259 | 259 |
batch <- gl(2, 5) |
260 |
- obj1 <- sconeExperiment(e) |
|
261 |
- obj2 <- sconeExperiment(e, batch=batch) |
|
260 |
+ obj1 <- SconeExperiment(e) |
|
261 |
+ obj2 <- SconeExperiment(e, batch=batch) |
|
262 | 262 |
|
263 | 263 |
res1 <- scone(obj1, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, |
264 | 264 |
adjust_batch = "no", eval_kclust = 3, return_norm = "in_memory") |
... | ... |
@@ -273,7 +273,7 @@ test_that("batch and bio can be confounded if at least one of adjust_bio or adju |
273 | 273 |
e <- matrix(rpois(10000, lambda = 5), ncol=10) |
274 | 274 |
rownames(e) <- as.character(1:nrow(e)) |
275 | 275 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
276 |
- obj <- sconeExperiment(e, batch=gl(2, 5), bio=gl(2, 5)) |
|
276 |
+ obj <- SconeExperiment(e, batch=gl(2, 5), bio=gl(2, 5)) |
|
277 | 277 |
|
278 | 278 |
expect_warning(scone(obj, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, |
279 | 279 |
adjust_batch = "yes", eval_kclust = 3), |
... | ... |
@@ -290,13 +290,13 @@ test_that("batch and bio can contain NA", { |
290 | 290 |
colnames(e) <- paste0("Sample", 1:ncol(e)) |
291 | 291 |
batch <- gl(2, 5) |
292 | 292 |
bio <- gl(5, 2) |
293 |
- obj <- sconeExperiment(e, batch=batch, bio=bio) |
|
293 |
+ obj <- SconeExperiment(e, batch=batch, bio=bio) |
|
294 | 294 |
res1 <- scone(obj, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, evaluate = TRUE, |
295 | 295 |
adjust_batch = "no", eval_kclust = 3) |
296 | 296 |
|
297 | 297 |
batch[1] <- NA |
298 | 298 |
bio[2] <- NA |
299 |
- obj <- sconeExperiment(e, batch=batch, bio=bio) |
|
299 |
+ obj <- SconeExperiment(e, batch=batch, bio=bio) |
|
300 | 300 |
|
301 | 301 |
res2 <- scone(obj, imputation=impute_null, scaling=identity, k_ruv=0, k_qc=0, evaluate = TRUE, |
302 | 302 |
adjust_batch = "no", eval_kclust = 3) |
... | ... |
@@ -10,7 +10,7 @@ test_that("select_methods works in all three modes", { |
10 | 10 |
bio <- gl(2, 5) |
11 | 11 |
batch <- as.factor(rep(1:2, 5)) |
12 | 12 |
|
13 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
13 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
14 | 14 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
15 | 15 |
bio = as.factor(bio), batch=as.factor(batch)) |
16 | 16 |
|
... | ... |
@@ -45,7 +45,7 @@ test_that("get_normalized subsets score matrix", { |
45 | 45 |
bio <- gl(2, 5) |
46 | 46 |
batch <- as.factor(rep(1:2, 5)) |
47 | 47 |
|
48 |
- obj <- sconeExperiment(e, qc=qc_mat, |
|
48 |
+ obj <- SconeExperiment(e, qc=qc_mat, |
|
49 | 49 |
negcon_ruv=c(rep(TRUE, 100), rep(FALSE, NROW(e)-100)), |
50 | 50 |
bio = as.factor(bio), batch=as.factor(batch)) |
51 | 51 |
|
... | ... |
@@ -438,7 +438,7 @@ framework for evaluating the performance of normalization workflows. |
438 | 438 |
## Creating a SconeExperiment Object |
439 | 439 |
|
440 | 440 |
Prior to running main `scone` function we will want to define a |
441 |
-`sconeExperiment` object that contains the primary expression data, |
|
441 |
+`SconeExperiment` object that contains the primary expression data, |
|
442 | 442 |
experimental metadata, and control gene sets. |
443 | 443 |
|
444 | 444 |
```{r scone_init} |
... | ... |
@@ -470,7 +470,7 @@ poscon = intersect(rownames(expr),strsplit(paste0("ALS2, CDK5R1, CYFIP1,", |
470 | 470 |
negcon = intersect(rownames(expr),hk) |
471 | 471 |
|
472 | 472 |
# Creating a SconeExperiment Object |
473 |
-my_scone <- sconeExperiment(expr, |
|
473 |
+my_scone <- SconeExperiment(expr, |
|
474 | 474 |
qc=ppq, bio = bio, |
475 | 475 |
negcon_ruv = rownames(expr) %in% negcon, |
476 | 476 |
poscon = rownames(expr) %in% poscon |
... | ... |
@@ -555,7 +555,7 @@ but will run scone without imputation. |
555 | 555 |
The main `scone` method arguments allow for a lot of flexibility, but a user |
556 | 556 |
may choose to run very specific combinations of modules. For this purpose, |
557 | 557 |
`scone` can be run in `run=FALSE` mode, generating a list of workflows to be |
558 |
-performed and storing this list within a `sconeExperiment` object. After |
|
558 |
+performed and storing this list within a `SconeExperiment` object. After |
|
559 | 559 |
running this command the list can be extracted using the `get_params` method. |
560 | 560 |
|
561 | 561 |
```{r scone_params} |
... | ... |
@@ -591,7 +591,7 @@ apply(get_params(my_scone),2,unique) |
591 | 591 |
Some scaling methods, such as scaling by gene detection rate (`EFF_FN()`), will |
592 | 592 |
not make sense within the context of imputed data, as imputation replaces |
593 | 593 |
zeroes with non-zero values. We can use the `select_methods` method to produce |
594 |
-a `sconeExperiment` object initialized to run only meaningful normalization |
|
594 |
+a `SconeExperiment` object initialized to run only meaningful normalization |
|
595 | 595 |
workflows. |
596 | 596 |
|
597 | 597 |
```{r scone_params_filt, eval=FALSE} |