Browse code

remove EDASeq and scran dependencies

Davide Risso authored on 30/06/2017 22:14:15
Showing 5 changed files

... ...
@@ -25,8 +25,6 @@ Imports:
25 25
   cluster,
26 26
   compositions,
27 27
   diptest,
28
-  EDASeq,
29
-  scran,
30 28
   edgeR,
31 29
   fpc,
32 30
   gplots,
... ...
@@ -50,6 +48,7 @@ Suggests:
50 48
   plotly,
51 49
   reshape2,
52 50
   rmarkdown,
51
+  scran,
53 52
   scRNAseq,
54 53
   shiny,
55 54
   testthat,
... ...
@@ -81,7 +81,6 @@ importFrom(rhdf5,h5ls)
81 81
 importFrom(rhdf5,h5read)
82 82
 importFrom(rhdf5,h5write)
83 83
 importFrom(rhdf5,h5write.default)
84
-importFrom(scran,computeSumFactors)
85 84
 importFrom(stats,approx)
86 85
 importFrom(stats,as.formula)
87 86
 importFrom(stats,binomial)
... ...
@@ -3,11 +3,11 @@
3 3
 #' @export
4 4
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
5 5
 #' @return Sum-scaled normalized matrix.
6
-#'   
6
+#'
7 7
 #' @examples
8 8
 #' ei <- matrix(0:20,nrow = 7)
9 9
 #' eo <- SUM_FN(ei)
10
-#' 
10
+#'
11 11
 SUM_FN = function (ei) {
12 12
   scales = colSums(ei)
13 13
   eo = t(t(ei) * mean(scales) / scales)
... ...
@@ -21,11 +21,11 @@ SUM_FN = function (ei) {
21 21
 #' @export
22 22
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
23 23
 #' @return TMM normalized matrix.
24
-#'   
24
+#'
25 25
 #' @examples
26 26
 #' ei <- matrix(0:20,nrow = 7)
27 27
 #' eo <- TMM_FN(ei)
28
-#' 
28
+#'
29 29
 TMM_FN = function(ei) {
30 30
   size_fac = calcNormFactors(ei, method = "TMM")
31 31
   scales = (colSums(ei) * size_fac)
... ...
@@ -39,11 +39,11 @@ TMM_FN = function(ei) {
39 39
 #' @export
40 40
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
41 41
 #' @return RLE normalized matrix.
42
-#'   
42
+#'
43 43
 #' @examples
44 44
 #' ei <- matrix(0:20,nrow = 7)
45 45
 #' eo <- DESEQ_FN(ei)
46
-#' 
46
+#'
47 47
 DESEQ_FN = function(ei) {
48 48
   size_fac = calcNormFactors(ei, method = "RLE")
49 49
   scales = (colSums(ei) * size_fac)
... ...
@@ -57,11 +57,11 @@ DESEQ_FN = function(ei) {
57 57
 #' @export
58 58
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
59 59
 #' @return UQ normalized matrix.
60
-#'   
60
+#'
61 61
 #' @examples
62 62
 #' ei <- matrix(0:20,nrow = 7)
63 63
 #' eo <- UQ_FN(ei)
64
-#' 
64
+#'
65 65
 UQ_FN = function(ei) {
66 66
   size_fac = calcNormFactors(ei, method = "upperquartile")
67 67
   scales = (colSums(ei) * size_fac)
... ...
@@ -71,30 +71,30 @@ UQ_FN = function(ei) {
71 71
 
72 72
 #' Full-quantile normalization wrapper function
73 73
 #' @importFrom aroma.light normalizeQuantileRank.matrix
74
-#' @details SCONE "scaling" wrapper for 
74
+#' @details SCONE "scaling" wrapper for
75 75
 #'   \code{\link[aroma.light]{normalizeQuantileRank.matrix}}).
76 76
 #' @export
77 77
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
78 78
 #' @return Full-quantile normalized matrix.
79
-#'   
79
+#'
80 80
 #' @examples
81 81
 #' ei <- matrix(0:20,nrow = 7)
82 82
 #' eo <- FQ_FN(ei)
83
-#' 
83
+#'
84 84
 FQ_FN = function(ei) {
85 85
   eo = normalizeQuantileRank.matrix(ei)
86 86
   return(eo)
87 87
 }
88 88
 
89 89
 #' @rdname FQ_FN
90
-#' @details Unlike FQ_FN, FQT_FN handles ties carefully (see 
90
+#' @details Unlike FQ_FN, FQT_FN handles ties carefully (see
91 91
 #'   \code{\link[limma]{normalizeQuantiles}} for details).
92 92
 #' @export
93
-#' 
93
+#'
94 94
 #' @examples
95 95
 #' ei <- matrix(0:20,nrow = 7)
96 96
 #' eo <- FQT_FN(ei)
97
-#' 
97
+#'
98 98
 FQT_FN = function(ei) {
99 99
   eo = normalizeQuantileRank.matrix(ei, ties = TRUE)
100 100
   return(eo)
... ...
@@ -103,16 +103,16 @@ FQT_FN = function(ei) {
103 103
 #' Centered log-ratio (CLR) normalization wrapper function
104 104
 #' @importFrom compositions clr
105 105
 #' @importFrom matrixStats colMedians
106
-#' @details SCONE scaling wrapper for 
106
+#' @details SCONE scaling wrapper for
107 107
 #'   \code{\link[compositions]{clr}}).
108 108
 #' @export
109 109
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
110 110
 #' @return CLR normalized matrix.
111
-#'   
111
+#'
112 112
 #' @examples
113 113
 #' ei <- matrix(0:20,nrow = 7)
114 114
 #' eo <- CLR_FN(ei)
115
-#' 
115
+#'
116 116
 CLR_FN = function (ei)
117 117
 {
118 118
   scale_mat <- t(clr(t(ei))) - log(ei)
... ...
@@ -123,18 +123,21 @@ CLR_FN = function (ei)
123 123
 }
124 124
 
125 125
 #' Simple deconvolution normalization wrapper
126
-#' @importFrom scran computeSumFactors
127 126
 #' @details SCONE scaling wrapper for \code{\link[scran]{computeSumFactors}}).
128 127
 #' @export
129 128
 #' @param ei Numerical matrix. (rows = genes, cols = samples).
130 129
 #' @return scran normalized matrix.
131
-#'   
130
+#'
132 131
 #' @examples
133 132
 #' ei <- matrix(0:76,nrow = 7)
134 133
 #' eo <- SCRAN_FN(ei)
135
-#' 
134
+#'
136 135
 SCRAN_FN = function(ei){
137
-  scales = computeSumFactors(ei, sizes = ceiling(sqrt(ncol(ei))))
136
+  if (!requireNamespace("scran", quietly = TRUE)) {
137
+    stop("scran package needed for SCRAN_FN()")
138
+  }
139
+
140
+  scales = scran::computeSumFactors(ei, sizes = ceiling(sqrt(ncol(ei))))
138 141
   eo = t(t(ei) * mean(scales) / scales)
139 142
   return(eo)
140
-}
141 143
\ No newline at end of file
144
+}
... ...
@@ -16,7 +16,7 @@ CLR normalized matrix.
16 16
 Centered log-ratio (CLR) normalization wrapper function
17 17
 }
18 18
 \details{
19
-SCONE scaling wrapper for 
19
+SCONE scaling wrapper for
20 20
   \code{\link[compositions]{clr}}).
21 21
 }
22 22
 \examples{
... ...
@@ -19,10 +19,10 @@ Full-quantile normalized matrix.
19 19
 Full-quantile normalization wrapper function
20 20
 }
21 21
 \details{
22
-SCONE "scaling" wrapper for 
22
+SCONE "scaling" wrapper for
23 23
   \code{\link[aroma.light]{normalizeQuantileRank.matrix}}).
24 24
 
25
-Unlike FQ_FN, FQT_FN handles ties carefully (see 
25
+Unlike FQ_FN, FQT_FN handles ties carefully (see
26 26
   \code{\link[limma]{normalizeQuantiles}} for details).
27 27
 }
28 28
 \examples{