README.md
ee2ed5f5
 ## SCONE ##
04b1c208
 
3e23574d
 [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
e4084f8e
 [![Build Status](https://travis-ci.org/YosefLab/scone.svg?branch=master)](https://travis-ci.org/YosefLab/scone)
ee405e91
 [![Coverage](https://codecov.io/gh/YosefLab/scone/branch/master/graph/badge.svg)](https://codecov.io/gh/YosefLab/scone)
59442151
 ### Single-Cell Overview of Normalized Expression data ###
ee2ed5f5
 
20788d46
 SCONE (Single-Cell Overview of Normalized Expression), a package for single-cell RNA-seq data quality control (QC) and normalization. This data-driven framework uses summaries of expression data to assess the efficacy of normalization workflows.
ee2ed5f5
 
db1143e7
 ### Install from Bioconductor ###
ee2ed5f5
 
db1143e7
 We recommend installation of the package via bioconductor.
85b5299c
 
 ```{r}
 source("https://bioconductor.org/biocLite.R")
db1143e7
 biocLite("scone")
85b5299c
 ```
 
db1143e7
 Note that SCONE is currently in Bioconductor devel and hence requires R-devel (>= 3.4).
 
 ### Install from Github ###
 
 Usually not recommended. SCONE is under active development. To download the development version of the package, use the `devtools` package.
 
 ```{r}
 library(devtools)
 install_github("YosefLab/scone")
 ```
 
 ### Install for R 3.3 ###
bd20644f
 
 You can download the latest release of SCONE for R 3.3 [here](https://github.com/YosefLab/scone/releases/tag/v0.99.0).