Package: sccomp Title: Robust Outlier-aware Estimation of Composition and Heterogeneity for Single-cell Data Version: 1.7.0 Authors@R: c(person("Stefano", "Mangiola", email = "mangiolastefano@gmail.com", role = c("aut", "cre")) ) Description: A robust and outlier-aware method for testing differential tissue composition from single-cell data. This model can infer changes in tissue composition and heterogeneity, and can produce realistic data simulations based on any existing dataset. This model can also transfer knowledge from a large set of integrated datasets to increase accuracy further. License: GPL-3 Encoding: UTF-8 LazyData: true Roxygen: list(markdown = TRUE) RoxygenNote: 7.2.3 Biarch: true Depends: R (>= 4.2.0) Imports: methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstantools (>= 2.1.1), rstan (>= 2.26.0), SeuratObject, SingleCellExperiment, parallel, dplyr, tidyr, purrr, magrittr, rlang, tibble, boot, lifecycle, stats, tidyselect, utils, ggplot2, ggrepel, patchwork, forcats, readr, scales, stringr, glue Suggests: BiocStyle, testthat (>= 3.0.0), markdown, knitr, tidyseurat, tidySingleCellExperiment, loo Enhances: furrr, extraDistr LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0) SystemRequirements: GNU make VignetteBuilder: knitr RdMacros: lifecycle biocViews: ImmunoOncology, Normalization, Sequencing, RNASeq, Software, GeneExpression, Transcriptomics, SingleCell, Clustering LazyDataCompression: xz Config/testthat/edition: 3 URL: https://github.com/stemangiola/sccomp BugReports: https://github.com/stemangiola/sccomp/issues Additional_repositories: https://mc-stan.org/r-packages/