Browse code

version 0.99.7

miccec authored on 13/03/2020 18:09:18
Showing 15 changed files

... ...
@@ -1,16 +1,16 @@
1 1
 Package: scTHI
2
-Title:  Indentification of  significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data. 
3
-Version:  0.99.6
2
+Title:  Indentification of  significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data
3
+Version:  0.99.7
4 4
 Authors@R: c(person("Francesca Pia", "Caruso", email = "francescapia.caruso@gmail.com", role = c("aut")),
5 5
 	person("Michele", "Ceccarelli", email = "m.ceccarelli@gmail.com", role = c("aut", "cre")))
6 6
 Description: scTHI is an R package to identify active pairs of ligand-receptors from single cells in order to study,among others, tumor-host interactions. scTHI contains a set of signatures to classify cells from the tumor microenvironment.
7
-Depends: scTHI.data, R (>= 4.0)
7
+Depends:  R (>= 4.0)
8 8
 License: GPL-2
9 9
 Encoding: UTF-8
10 10
 RoxygenNote: 6.1.1.9000
11 11
 LazyData: false
12 12
 Imports: BiocParallel, Rtsne, grDevices, graphics, stats 
13
-Suggests: knitr, rmarkdown
13
+Suggests: scTHI.data, knitr, rmarkdown
14 14
 VignetteBuilder: knitr
15 15
 biocViews: Software,SingleCell
16 16
 BugReports: https://github.com/miccec/scTHI/issues
... ...
@@ -27,6 +27,7 @@
27 27
 #'  a specific
28 28
 #'   phenotype based on the first significant enriched gene set.
29 29
 #' @examples
30
+#' library(scTHI.data)
30 31
 #' data(scExample)
31 32
 #' Class <- TME_classification(scExample)
32 33
 #' @return A list with two items: Class (character) and ClassLegend
... ...
@@ -7,6 +7,7 @@
7 7
 #' @param Class Object returned by TME_classification function.
8 8
 #' @param cexPoint Set the point size.
9 9
 #' @examples
10
+#' library(scTHI.data)
10 11
 #' data(scExample)
11 12
 #' result <-  scTHI_score(scExample,
12 13
 #'            cellCusterA = colnames(scExample)[1:30],
... ...
@@ -5,6 +5,7 @@
5 5
 #' @param cexPoint Set the point size.
6 6
 #' @param legendPos Character string to custom the legend position.
7 7
 #' @examples
8
+#' library(scTHI.data)
8 9
 #' data(scExample)
9 10
 #' result <-  scTHI_score(scExample,
10 11
 #'                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -98,6 +98,7 @@ getcolors <- function(genesToplot, expMat,
98 98
 #' @param cexPoint Set the point size.
99 99
 #' @param interactionToplot Interaction pair to plot.
100 100
 #' @examples
101
+#' library(scTHI.data)
101 102
 #' data(scExample)
102 103
 #' result <-  scTHI_score(scExample,
103 104
 #'                  cellCusterA = colnames(scExample)[1:30],
... ...
@@ -13,6 +13,7 @@
13 13
 #'   and partnerB gene, respectively.
14 14
 #' @param nRes Number of pairs to plot (all if NULL).
15 15
 #' @examples
16
+#' library(scTHI.data)
16 17
 #' data(scExample)
17 18
 #' result <-  scTHI_score(scExample,
18 19
 #'                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -4,6 +4,7 @@
4 4
 #' package.
5 5
 #' @param scTHIresult scTHI object.
6 6
 #' @examples
7
+#' library(scTHI.data)
7 8
 #' data(scExample)
8 9
 #' result <-  scTHI_score(scExample,
9 10
 #'                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -129,6 +129,7 @@ getScore <- function(expMat, interaction_table, cellCuster,
129 129
 #' @examples
130 130
 #'
131 131
 #' ####################### example of scTHI_score
132
+#' library(scTHI.data)
132 133
 #' data(scExample)
133 134
 #' result <-  scTHI_score(scExample,
134 135
 #'       cellCusterA = colnames(scExample)[1:30],
... ...
@@ -50,6 +50,7 @@ a collection
50 50
 of signatures of different cell types.
51 51
 }
52 52
 \examples{
53
+library(scTHI.data)
53 54
 data(scExample)
54 55
 Class <- TME_classification(scExample)
55 56
 }
... ...
@@ -21,6 +21,7 @@ Generates a plot on the t-SNE coordinates, labeling cells by TME
21 21
 classification.
22 22
 }
23 23
 \examples{
24
+library(scTHI.data)
24 25
 data(scExample)
25 26
 result <-  scTHI_score(scExample,
26 27
            cellCusterA = colnames(scExample)[1:30],
... ...
@@ -21,6 +21,7 @@ None
21 21
 Graphs the output of scTHI_runTsne, labeling cells by clusters.
22 22
 }
23 23
 \examples{
24
+library(scTHI.data)
24 25
 data(scExample)
25 26
 result <-  scTHI_score(scExample,
26 27
                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -25,6 +25,7 @@ corresponding
25 25
 gene expression value.
26 26
 }
27 27
 \examples{
28
+library(scTHI.data)
28 29
 data(scExample)
29 30
 result <-  scTHI_score(scExample,
30 31
                  cellCusterA = colnames(scExample)[1:30],
... ...
@@ -30,6 +30,7 @@ None
30 30
 Creates barplots of scTHI_score results.
31 31
 }
32 32
 \examples{
33
+library(scTHI.data)
33 34
 data(scExample)
34 35
 result <-  scTHI_score(scExample,
35 36
                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -18,6 +18,7 @@ Runs t-SNE dimensionality reduction on selected features based on Rtsne
18 18
 package.
19 19
 }
20 20
 \examples{
21
+library(scTHI.data)
21 22
 data(scExample)
22 23
 result <-  scTHI_score(scExample,
23 24
                        cellCusterA = colnames(scExample)[1:30],
... ...
@@ -61,6 +61,7 @@ cells).
61 61
 \examples{
62 62
 
63 63
 ####################### example of scTHI_score
64
+library(scTHI.data)
64 65
 data(scExample)
65 66
 result <-  scTHI_score(scExample,
66 67
       cellCusterA = colnames(scExample)[1:30],