Name Mode Size
R 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.BBSoptions 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
LICENSE 100644 1 kb
NAMESPACE 100644 0 kb
NEWS 100644 1 kb
README.md 100644 3 kb
README.md
# runibic: UniBic biclustering algorithm for R This package contains implementation of UniBic biclustering algorithm for gene expression data [Wang2016] The algorithm tries to locate trend-preserving biclusters within complex and noisy data. ## Functions This package provides the following main functions: * `BCUnibic`/`runibic` - parallel UniBic for continuous data * `BCUnibicD` - parallel UniBic for discrete data The package provides some additional functions: * `pairwiseLCS` - calculates Longest Common Subsequence (LCS) between two vectors * `calculateLCS` - calculates LCSes between all pairs of the input dataset * `backtrackLCS` - recovers LCS from the dynamic programming matrix * `cluster` - main part of UniBic algorithm (biclusters seeding and expanding) * `unisort` - returns matrix of indexes based on the increasing order in each row * `discretize` - performs discretization using Fibonacci heap (sorting method used originally in UniBic) or standard sorting ## Installation The package may be installed as follows: ```r install.packages("devtools") devtools::install_github("athril/runibic") ``` ## Example ### Gene expression dataset This example presents how to use runibic package on gene expression dataset: ```r library(runibic) library(biclust) data(BicatYeast) res <- biclust(method=BCUnibic(),BicatYeast) drawHeatmap(BicatYeast, res, 1) parallelCoordinates(BicatYeast,res,1) ``` ### Summarized experiment This example presents how to use runibic package on SummarizedExperiment: ```r library(runibic) library(biclust) library(SummarizedExperiment) data(airway, package="airway") se <- airway[1:20,] res<- runibic(se) parallelCoordinates(assays(se)[[1]], res[[1]], 2) ``` ## Tutorial Please check [runibic tutorial](https://github.com/athril/runibic/tree/master/vignettes/runibic.Rmd) ## Citation For the original sequential version of the UniBic please use the following citation: **Zhenjia Wang, Guojun Li, Robert W. Robinson, Xiuzhen Huang *UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data* Scientific Reports 6, 2016; 23466, doi: https://doi:10.1038/srep23466** If you use in your work this package with parallel version of UniBic please use the following citation: **Patryk Orzechowski, Artur Pańszczyk, Xiuzhen Huang Jason H. Moore: *runibic: a Bioconductor package for parallel row-based biclustering of gene expression data* bioRxiv, 2017; 210682, doi: [https://doi.org/10.1101/210682](https://doi.org/10.1101/210682)** BibTex entry: ``` @article{orzechowski2018runibic, author = {Orzechowski, Patryk and Pańszczyk, Artur and Huang, Xiuzhen and Moore, Jason H}, title = {runibic: a Bioconductor package for parallel row-based biclustering of gene expression data}, journal = {Bioinformatics}, volume = {}, number = {}, pages = {bty512}, year = {2018}, doi = {10.1093/bioinformatics/bty512}, URL = {http://dx.doi.org/10.1093/bioinformatics/bty512}, eprint = {/oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty512/4/bty512.pdf} } ``` ## References * [Wang2016] Wang, Zhenjia, et al. "UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data." Scientific reports 6 (2016): 23466.