Name Mode Size
R 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
README.md 100644 2 kb
README.md
# rqt: utilities for gene-level meta-analysis ## Installation ### Release version ```rqt``` is currently accepted into Bioconductor: https://github.com/Bioconductor/Contributions/issues/212 and hence requires the version of R >=3.4 and the version of Bioconductor of 3.5. If you have these installed, then ```rqt``` can be installed from Github using biocLite: ``` source("https://bioconductor.org/biocLite.R") biocLite("rqt") ``` ### Developing version The last version of rqt can be downloaded using devtools: ``` devtools::install_github("izhbannikov/rqt@devel", buildVignette=TRUE) ``` ## Usage ###Single dataset ``` library(rqt) # Loading data and constructing the objects # data <- data.matrix(read.table(system.file("extdata/test.bin1.dat", package="rqt"), header=TRUE)) pheno <- data[,1] geno <- data[, 2:dim(data)[2]] colnames(geno) <- paste(seq(1, dim(geno)[2])) geno.obj <- SummarizedExperiment(geno) obj <- rqt(phenotype=pheno, genotype=geno.obj) # Analysis # res <- geneTest(obj, method="pca", out.type = "D") print(res) ``` ### Multiple datasets (meta analysis) ``` library(rqt) data1 <- data.matrix(read.table(system.file("extdata/phengen2.dat", package="rqt"), skip=1)) pheno <- data1[,1] geno <- data1[, 2:dim(data1)[2]] colnames(geno) <- paste(seq(1, dim(geno)[2])) geno.obj <- SummarizedExperiment(geno) obj1 <- rqt(phenotype=pheno, genotype=geno.obj) data2 <- data.matrix(read.table(system.file("extdata/phengen3.dat", package="rqt"), skip=1)) pheno <- data2[,1] geno <- data2[, 2:dim(data2)[2]] colnames(geno) <- paste(seq(1, dim(geno)[2])) geno.obj <- SummarizedExperiment(geno) obj2 <- rqt(phenotype=pheno, genotype=geno.obj) data3 <- data.matrix(read.table(system.file("extdata/phengen.dat", package="rqt"), skip=1)) pheno <- data3[,1] geno <- data3[, 2:dim(data3)[2]] colnames(geno) <- paste(seq(1, dim(geno)[2])) geno.obj <- SummarizedExperiment(geno) obj3 <- rqt(phenotype=pheno, genotype=geno.obj) res.meta <- geneTestMeta(list(obj1, obj2, obj3)) print(res.meta) ```