Name Mode Size
.github 040000
R 040000
data-raw 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 1 kb
NEWS.md 100644 0 kb
README.Rmd 100644 5 kb
README.md 100644 17 kb
codecov.yml 100644 0 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # rprimer <img src='man/figures/rprimer.png' align="right" height="139" /> <!-- badges: start --> [![R-CMD-check](https://github.com/sofpn/rprimer/workflows/R-CMD-check/badge.svg)](https://github.com/sofpn/rprimer/actions) <!-- badges: end --> rprimer is an R package that designs degenerate oligos and PCR assays from a multiple DNA sequence alignment of target sequences of interest. The package is specifically designed for sequence variable viruses. ## Installation To install rprimer from [Bioconductor](https://bioconductor.org/packages/devel/bioc/html/rprimer.html), start R (version 4.2 or later) and enter: ``` r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("rprimer") ``` Attach the package by calling: ``` r library(rprimer) ``` ## Overview The package contains five main functions: - `consensusProfile()` - `designOligos()` - `designAssays()` - `checkMatch()` - `plotData()` ## Shiny application The package can be run through a Shiny application (a graphical user interface). To start the application, type `runRprimerApp()` from within R upon installing and attaching the package. The application can also be found online, [here](https://sofpn.shinyapps.io/rprimer). ## Workflow ### Import alignment The first step is to import an alignment with target sequences of interest. This is done by using `readDNAMultipleAlignment()`. The file “example_alignment.txt” contains an alignment of 50 hepatitis E virus sequences. ``` r infile <- system.file("extdata", "example_alignment.txt", package = "rprimer") myAlignment <- readDNAMultipleAlignment(infile, format = "fasta") ``` ### Step 1: `consensusProfile` `consensusProfile()` takes a `DNAMultipleAlignment` as input and returns all the information needed for the subsequent design process. ``` r myConsensusProfile <- consensusProfile(myAlignment, ambiguityThreshold = 0.05) ``` Results (row 100-106): | position | a | c | g | t | other | gaps | majority | identity | iupac | coverage | |---------:|-----:|-----:|-----:|-----:|------:|-----:|:---------|---------:|:------|---------:| | 100 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0 | C | 1.00 | C | 1.00 | | 101 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | A | 1.00 | A | 1.00 | | 102 | 0.16 | 0.00 | 0.84 | 0.00 | 0.00 | 0 | G | 0.84 | R | 1.00 | | 103 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0 | G | 1.00 | G | 1.00 | | 104 | 0.00 | 0.98 | 0.00 | 0.00 | 0.02 | 0 | C | 1.00 | C | 1.00 | | 105 | 0.20 | 0.00 | 0.02 | 0.78 | 0.00 | 0 | T | 0.78 | W | 0.98 | | 106 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0 | G | 1.00 | G | 1.00 | The results can be visualized with `plotData()`: ``` r plotData(myConsensusProfile) #> Warning in ggplot2::geom_segment(color = "#93A8AC", ggplot2::aes(x = min(position), : All aesthetics have length 1, but the data has 7597 rows. #> ℹ Please consider using `annotate()` or provide this layer with data containing #> a single row. ``` <img src="man/figures/README-unnamed-chunk-6-1.png" width="100%" /> ### Step 2: `designOligos` The next step is to design oligos. You can either use the default settings as below, or adjust them as preferred (see the package vignette or `?designOligos` for more information). The default settings allow a maximum degeneracy of four, which means that only the most conserved regions of the genome will be considered as oligo binding sites. ``` r myOligos <- designOligos(myConsensusProfile) ``` Results (first six rows): | type | fwd | rev | start | end | length | iupacSequence | iupacSequenceRc | identity | coverage | degeneracy | gcContentMean | gcContentRange | tmMean | tmRange | deltaGMean | deltaGRange | sequence | sequenceRc | gcContent | tm | deltaG | method | score | roiStart | roiEnd | |:-------|:------|:------|------:|----:|-------:|:---------------------|:---------------------|---------:|---------:|-----------:|--------------:|---------------:|-------:|--------:|-----------:|------------:|:-----------|:-----------|:-----------|:-----------|:-----------|:----------|------:|---------:|-------:| | probe | TRUE | TRUE | 124 | 143 | 20 | TCYGCCYTGGCGAATGCTGT | ACAGCATTCGCCARGGCRGA | 0.95 | 0.99 | 4 | 0.60 | 0.10 | 63.17 | 4.33 | -21.61 | 2.08 | TCCGCCCT…. | ACAGCATT…. | 0.65, 0….. | 65.33623…. | -22.6538…. | ambiguous | 2 | 1 | 7597 | | probe | FALSE | TRUE | 127 | 146 | 20 | GCCYTGGCGAATGCTGTGGT | ACCACAGCATTCGCCARGGC | 0.98 | 0.99 | 2 | 0.62 | 0.05 | 63.18 | 1.84 | -21.73 | 0.83 | GCCCTGGC…. | ACCACAGC…. | 0.65, 0.6 | 64.10586…. | -22.1475…. | ambiguous | 3 | 1 | 7597 | | primer | TRUE | FALSE | 128 | 146 | 19 | CCYTGGCGAATGCTGTGGT | ACCACAGCATTCGCCARGG | 0.97 | 0.99 | 2 | 0.61 | 0.05 | 61.48 | 1.95 | -19.84 | 0.83 | CCCTGGCG…. | ACCACAGC…. | 0.631578…. | 62.45335…. | -20.2570…. | ambiguous | 3 | 1 | 7597 | | primer | TRUE | FALSE | 128 | 147 | 20 | CCYTGGCGAATGCTGTGGTR | YACCACAGCATTCGCCARGG | 0.96 | 0.99 | 4 | 0.60 | 0.10 | 61.61 | 3.37 | -20.55 | 1.76 | CCCTGGCG…. | TACCACAG…. | 0.6, 0.5…. | 61.77166…. | -20.5089…. | ambiguous | 2 | 1 | 7597 | | probe | TRUE | TRUE | 128 | 146 | 19 | CCYTGGCGAATGCTGTGGT | ACCACAGCATTCGCCARGG | 0.97 | 0.99 | 2 | 0.61 | 0.05 | 60.45 | 1.94 | -19.84 | 0.83 | CCCTGGCG…. | ACCACAGC…. | 0.631578…. | 61.41686…. | -20.2570…. | ambiguous | 3 | 1 | 7597 | | probe | TRUE | TRUE | 128 | 147 | 20 | CCYTGGCGAATGCTGTGGTR | YACCACAGCATTCGCCARGG | 0.96 | 0.99 | 4 | 0.60 | 0.10 | 60.63 | 3.37 | -20.55 | 1.76 | CCCTGGCG…. | TACCACAG…. | 0.6, 0.5…. | 60.78676…. | -20.5089…. | ambiguous | 2 | 1 | 7597 | The results can be visualized as a dashboard, using `plotData()`: ``` r plotData(myOligos) ``` <img src="man/figures/README-unnamed-chunk-9-1.png" width="100%" /> ### Step 3: `designAssays` `designAssays()` finds pairs of forward and reverse primers and combine them with probes, if probes are present in the input dataset. You can either use the default settings as below, or adjust the design constraints (see the package vignette or `?designAssays` for more information). ``` r myAssays <- designAssays(myOligos) ``` Results (first six rows): | start | end | length | totalDegeneracy | score | startFwd | endFwd | lengthFwd | iupacSequenceFwd | identityFwd | coverageFwd | degeneracyFwd | gcContentMeanFwd | gcContentRangeFwd | tmMeanFwd | tmRangeFwd | deltaGMeanFwd | deltaGRangeFwd | sequenceFwd | gcContentFwd | tmFwd | deltaGFwd | methodFwd | startRev | endRev | lengthRev | iupacSequenceRev | identityRev | coverageRev | degeneracyRev | gcContentMeanRev | gcContentRangeRev | tmMeanRev | tmRangeRev | deltaGMeanRev | deltaGRangeRev | sequenceRev | gcContentRev | tmRev | deltaGRev | methodRev | plusPr | minusPr | startPr | endPr | lengthPr | iupacSequencePr | iupacSequenceRcPr | identityPr | coveragePr | degeneracyPr | gcContentMeanPr | gcContentRangePr | tmMeanPr | tmRangePr | deltaGMeanPr | deltaGRangePr | sequencePr | sequenceRcPr | gcContentPr | tmPr | deltaGPr | methodPr | roiStart | roiEnd | |------:|-----:|-------:|----------------:|------:|---------:|-------:|----------:|:---------------------|------------:|------------:|--------------:|-----------------:|------------------:|----------:|-----------:|--------------:|---------------:|:------------|:-------------|:-----------|:-----------|:----------|---------:|-------:|----------:|:---------------------|------------:|------------:|--------------:|-----------------:|------------------:|----------:|-----------:|--------------:|---------------:|:------------|:-------------|:-----------|:-----------|:----------|:-------|:--------|--------:|------:|---------:|:-----------------------|:-----------------------|-----------:|-----------:|-------------:|----------------:|-----------------:|---------:|----------:|-------------:|--------------:|:-----------|:-------------|:------------|:-----------|:-----------|:----------|---------:|-------:| | 5605 | 5673 | 69 | 6 | 2.00 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | FALSE | 5625 | 5642 | 18 | CMGGGTTGATTCTCAGCC | GGCTGAGAATCAACCCKG | 0.97 | 0.99 | 2 | 0.58 | 0.06 | 55.14 | 2.79 | -17.06 | 1.25 | CAGGGTTG…. | GGCTGAGA…. | 0.555555…. | 53.74554…. | -16.4324…. | ambiguous | 1 | 7597 | | 5605 | 5673 | 69 | 6 | 2.33 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | FALSE | 5625 | 5643 | 19 | CMGGGTTGATTCTCAGCCC | GGGCTGAGAATCAACCCKG | 0.97 | 0.99 | 2 | 0.61 | 0.05 | 57.63 | 2.64 | -18.54 | 1.25 | CAGGGTTG…. | GGGCTGAG…. | 0.578947…. | 56.30713…. | -17.9185…. | ambiguous | 1 | 7597 | | 5605 | 5673 | 69 | 6 | 2.00 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | TRUE | 5625 | 5644 | 20 | CMGGGTTGATTCTCAGCCCT | AGGGCTGAGAATCAACCCKG | 0.97 | 1.00 | 2 | 0.58 | 0.05 | 58.87 | 2.55 | -19.43 | 1.25 | CAGGGTTG…. | AGGGCTGA…. | 0.55, 0.6 | 57.59836…. | -18.8035…. | ambiguous | 1 | 7597 | | 5605 | 5673 | 69 | 6 | 1.67 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | TRUE | 5625 | 5645 | 21 | CMGGGTTGATTCTCAGCCCTT | AAGGGCTGAGAATCAACCCKG | 0.98 | 1.00 | 2 | 0.55 | 0.05 | 59.21 | 2.43 | -20.08 | 1.25 | CAGGGTTG…. | AAGGGCTG…. | 0.523809…. | 57.99472…. | -19.4553…. | ambiguous | 1 | 7597 | | 5605 | 5673 | 69 | 6 | 2.00 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | FALSE | 5625 | 5646 | 22 | CMGGGTTGATTCTCAGCCCTTC | GAAGGGCTGAGAATCAACCCKG | 0.98 | 0.99 | 2 | 0.57 | 0.05 | 59.91 | 2.28 | -21.11 | 1.25 | CAGGGTTG…. | GAAGGGCT…. | 0.545454…. | 58.77533…. | -20.4881…. | ambiguous | 1 | 7597 | | 5605 | 5673 | 69 | 6 | 2.00 | 5605 | 5624 | 20 | GGCRGTGGTTTCTGGGGTGA | 0.98 | 1 | 2 | 0.62 | 0.05 | 62.84 | 2.51 | -20.86 | 1.25 | GGCAGTGG…. | 0.6, 0.65 | 61.57995…. | -20.2350…. | ambiguous | 5654 | 5673 | 20 | GTTGGTTGGATGAASATAGG | 1 | 1 | 2 | 0.4 | 0 | 50.71 | 1.1 | -15.27 | 0.52 | GTTGGTTG…. | 0.4, 0.4 | 50.15469…. | -15.0078…. | ambiguous | TRUE | FALSE | 5626 | 5643 | 18 | MGGGTTGATTCTCAGCCC | GGGCTGAGAATCAACCCK | 0.97 | 0.99 | 2 | 0.58 | 0.06 | 55.71 | 1.65 | -17.21 | 0.94 | AGGGTTGA…. | GGGCTGAG…. | 0.555555…. | 54.88806…. | -16.7409…. | ambiguous | 1 | 7597 | The assays can be visualized using `plotData()`: ``` r plotData(myAssays) ``` <img src="man/figures/README-unnamed-chunk-12-1.png" width="100%" /> ### Additional step: `checkMatch` `checkMatch()` shows the proportion and names of the target sequences in the input alignment that match with the generated oligos or assays. See the package vignette or `?checkMatch` for more information. ``` r ## Randomly select six oligos to illustrate an example selection <- sample(seq_len(nrow(myOligos)), size = 6) matchTableOligos <- checkMatch(myOligos[selection, ], target = myAlignment) ``` Results: | iupacSequence | perfectMatch | idPerfectMatch | oneMismatch | idOneMismatch | twoMismatches | idTwoMismatches | threeMismatches | idThreeMismatches | fourOrMoreMismatches | idFourOrMoreMismatches | offTargetMatch | idOffTargetMatch | |:-----------------------|-------------:|:---------------|------------:|:--------------|--------------:|:----------------|----------------:|:------------------|---------------------:|:-----------------------|---------------:|:-----------------| | ACMGGGTTGATTCTCAGCCCTT | 0.90 | AB073912…. | 0.10 | AB481228…. | 0.00 | | 0 | | 0 | | 0 | | | TATWTTCATCCAACCAACCCC | 0.98 | AB073912…. | 0.02 | HM439284.1 | 0.00 | | 0 | | 0 | | 0 | | | CRGTGGTTTCTGGGGTGAC | 0.96 | AB073912…. | 0.04 | BD378055…. | 0.00 | | 0 | | 0 | | 0 | | | TTCATCCAACCAACCCCT | 0.98 | AB073912…. | 0.02 | HM439284.1 | 0.00 | | 0 | | 0 | | 0 | | | GGTGACMGGGTTGATTCT | 0.90 | AB073912…. | 0.08 | BD378055…. | 0.02 | JQ953665.1 | 0 | | 0 | | 0 | | | TGGTTTCTGGGGTGACMG | 0.96 | AB073912…. | 0.04 | BD378055…. | 0.00 | | 0 | | 0 | | 0 | | The match table can be visualized using `plotData()`: ``` r plotData(matchTableOligos) ``` <img src="man/figures/README-unnamed-chunk-15-1.png" width="100%" /> ## More information Please see the [package vignette](https://bioconductor.org/packages/devel/bioc/vignettes/rprimer/inst/doc/getting-started-with-rprimer.html) for more information on how to use the package. ## Citation Persson S., Larsson C., Simonsson M., Ellström P. (2022) rprimer: an R/bioconductor package for design of degenerate oligos for sequence variable viruses. [*BMC Bioinformatics* 23:239](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04781-0)