... | ... |
@@ -28,7 +28,7 @@ |
28 | 28 |
## |
29 | 29 |
################################################################## |
30 | 30 |
|
31 |
-normalize.quantiles <- function(x,copy=TRUE){ |
|
31 |
+normalize.quantiles <- function(x,copy=TRUE,keep.names=FALSE){ |
|
32 | 32 |
|
33 | 33 |
rows <- dim(x)[1] |
34 | 34 |
cols <- dim(x)[2] |
... | ... |
@@ -45,11 +45,16 @@ normalize.quantiles <- function(x,copy=TRUE){ |
45 | 45 |
#matrix(.C("qnorm_c", as.double(as.vector(x)), as.integer(rows), as.integer(cols))[[1]], rows, cols) |
46 | 46 |
|
47 | 47 |
## .Call("R_qnorm_c",x,copy, PACKAGE="preprocessCore"); |
48 |
- .Call("R_qnorm_c_handleNA",x,copy, PACKAGE="preprocessCore"); |
|
48 |
+ mat <- .Call("R_qnorm_c_handleNA",x,copy, PACKAGE="preprocessCore"); |
|
49 |
+ if(keep.names){ |
|
50 |
+ rownames(mat) <- rownames(x) |
|
51 |
+ colnames(mat) <- colnames(x) |
|
52 |
+ } |
|
53 |
+ mat |
|
49 | 54 |
} |
50 | 55 |
|
51 | 56 |
|
52 |
-normalize.quantiles.robust <- function(x,copy=TRUE,weights=NULL,remove.extreme=c("variance","mean","both","none"),n.remove=1,use.median=FALSE,use.log2=FALSE){ |
|
57 |
+normalize.quantiles.robust <- function(x,copy=TRUE,weights=NULL,remove.extreme=c("variance","mean","both","none"),n.remove=1,use.median=FALSE,use.log2=FALSE,keep.names=FALSE){ |
|
53 | 58 |
|
54 | 59 |
calc.var.ratios <- function(x){ |
55 | 60 |
cols <- dim(x)[2] |
... | ... |
@@ -104,5 +109,9 @@ normalize.quantiles.robust <- function(x,copy=TRUE,weights=NULL,remove.extreme=c |
104 | 109 |
} |
105 | 110 |
} |
106 | 111 |
|
107 |
- .Call("R_qnorm_robust_c",x,copy,weights,as.integer(use.median),as.integer(use.log2),as.integer(use.huber),PACKAGE="preprocessCore") |
|
112 |
+ mat <- .Call("R_qnorm_robust_c",x,copy,weights,as.integer(use.median),as.integer(use.log2),as.integer(use.huber),PACKAGE="preprocessCore") |
|
113 |
+ if(keep.names){ |
|
114 |
+ rownames(mat) <- rownames(x) |
|
115 |
+ colnames(mat) <- colnames(x) |
|
116 |
+ } |
|
108 | 117 |
} |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,108 @@ |
1 |
+################################################################## |
|
2 |
+## |
|
3 |
+## file: normalize.quantiles.R |
|
4 |
+## |
|
5 |
+## For a description of quantile normalization method see |
|
6 |
+## |
|
7 |
+## Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003)(2003) |
|
8 |
+## A Comparison of Normalization Methods for High |
|
9 |
+## Density Oligonucleotide Array Data Based on Bias and Variance. |
|
10 |
+## Bioinformatics 19,2,pp 185-193 |
|
11 |
+## |
|
12 |
+## History |
|
13 |
+## Pre Aug 23, 2003 Two years worth of stuff |
|
14 |
+## Aug 23, 2003 - Added use.log2 to "robust", |
|
15 |
+## added ability to pass additional parameters |
|
16 |
+## to normalize.AffyBatch.Quantiles.robust |
|
17 |
+## changed pmonly parameters on functions |
|
18 |
+## so that it is now a string argument "type" |
|
19 |
+## the options are pmonly, mmonly, together, separate |
|
20 |
+## Jan 31, 2004 - put a check for an integer matrix and force coercision to |
|
21 |
+## doubles if required in normalize.quantiles |
|
22 |
+## Mar 13, 2005 - Modifications to normalize.quantiles.robust including removing |
|
23 |
+## approx.method which never got implemented. Making it a use a .Call() |
|
24 |
+## rather than a .C() |
|
25 |
+## |
|
26 |
+## Sep 20, 2006 - fix .Call in normalize.quantiles.robust |
|
27 |
+## May 20, 2007 - port to preprocessCore. Remove anything to do with AffyBatch Objects |
|
28 |
+## |
|
29 |
+################################################################## |
|
30 |
+ |
|
31 |
+normalize.quantiles <- function(x,copy=TRUE){ |
|
32 |
+ |
|
33 |
+ rows <- dim(x)[1] |
|
34 |
+ cols <- dim(x)[2] |
|
35 |
+ |
|
36 |
+ if (!is.matrix(x)){ |
|
37 |
+ stop("Matrix expected in normalize.quantiles") |
|
38 |
+ } |
|
39 |
+ |
|
40 |
+ if (is.integer(x)){ |
|
41 |
+ x <- matrix(as.double(x),rows,cols) |
|
42 |
+ copy <- FALSE |
|
43 |
+ } |
|
44 |
+ |
|
45 |
+ #matrix(.C("qnorm_c", as.double(as.vector(x)), as.integer(rows), as.integer(cols))[[1]], rows, cols) |
|
46 |
+ |
|
47 |
+## .Call("R_qnorm_c",x,copy, PACKAGE="preprocessCore"); |
|
48 |
+ .Call("R_qnorm_c_handleNA",x,copy, PACKAGE="preprocessCore"); |
|
49 |
+} |
|
50 |
+ |
|
51 |
+ |
|
52 |
+normalize.quantiles.robust <- function(x,copy=TRUE,weights=NULL,remove.extreme=c("variance","mean","both","none"),n.remove=1,use.median=FALSE,use.log2=FALSE){ |
|
53 |
+ |
|
54 |
+ calc.var.ratios <- function(x){ |
|
55 |
+ cols <- dim(x)[2] |
|
56 |
+ vars <- apply(x,2,var) |
|
57 |
+ results <- matrix(0,cols,cols) |
|
58 |
+ for (i in 1:cols-1) |
|
59 |
+ for (j in (i+1):cols){ |
|
60 |
+ results[i,j] <- vars[i]/vars[j] |
|
61 |
+ results[j,i] <- vars[j]/vars[i] |
|
62 |
+ } |
|
63 |
+ results |
|
64 |
+ } |
|
65 |
+ |
|
66 |
+ calc.mean.dists <- function(x){ |
|
67 |
+ cols <- dim(x)[2] |
|
68 |
+ means <- colMeans(x) |
|
69 |
+ results <- matrix(0,cols,cols) |
|
70 |
+ for (i in 1:cols-1) |
|
71 |
+ for (j in (i+1):cols){ |
|
72 |
+ results[i,j] <- means[i] - means[j] |
|
73 |
+ results[j,i] <- means[j] - means[i] |
|
74 |
+ } |
|
75 |
+ results |
|
76 |
+ } |
|
77 |
+ |
|
78 |
+ use.huber <- FALSE |
|
79 |
+ remove.extreme <- match.arg(remove.extreme) |
|
80 |
+ |
|
81 |
+ rows <- dim(x)[1] |
|
82 |
+ cols <- dim(x)[2] |
|
83 |
+ |
|
84 |
+ if (is.null(weights)){ |
|
85 |
+ weights <- .Call("R_qnorm_robust_weights",x,remove.extreme,as.integer(n.remove),PACKAGE="preprocessCore") |
|
86 |
+ } else { |
|
87 |
+ if (is.numeric(weights)){ |
|
88 |
+ if (length(weights) != cols){ |
|
89 |
+ stop("Weights vector incorrect length\n") |
|
90 |
+ } |
|
91 |
+ if (sum(weights > 0) < 1){ |
|
92 |
+ stop("Need at least one non negative weights\n") |
|
93 |
+ } |
|
94 |
+ if (any(weights < 0)){ |
|
95 |
+ stop("Can't have negative weights") |
|
96 |
+ } |
|
97 |
+ } else { |
|
98 |
+ if (weights =="huber"){ |
|
99 |
+ use.huber <- TRUE |
|
100 |
+ weights <- rep(1,cols) |
|
101 |
+ } else { |
|
102 |
+ stop("Don't recognise weights argument as valid.") |
|
103 |
+ } |
|
104 |
+ } |
|
105 |
+ } |
|
106 |
+ |
|
107 |
+ .Call("R_qnorm_robust_c",x,copy,weights,as.integer(use.median),as.integer(use.log2),as.integer(use.huber),PACKAGE="preprocessCore") |
|
108 |
+} |