Commit information:
Commit id: 285a731a280125b1ac46a811da37189b02ae629f
fix missing seealso in Rd files
Committed by: Ben Bolstad
Author Name: Ben Bolstad
Commit date: 2014-09-05 19:17:51 -0700
Author date: 2014-09-05 19:17:51 -0700
Commit id: 193c6f8f1cc678d8e2c89260bc49af23d5d2f6b9
Remove Depends: methods (not needed)
Committed by: Ben Bolstad
Author Name: Ben Bolstad
Commit date: 2014-09-05 19:01:16 -0700
Author date: 2014-09-05 19:01:16 -0700
Commit id: 046edd2b6a073a4546ef574657194ff644dd2b93
fix various c compiler warnings
Committed by: Ben Bolstad
Author Name: Ben Bolstad
Commit date: 2014-09-05 18:58:17 -0700
Author date: 2014-09-05 18:58:17 -0700
git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/preprocessCore@93882 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -1,9 +1,8 @@ |
1 | 1 |
Package: preprocessCore |
2 |
-Version: 1.27.4 |
|
2 |
+Version: 1.27.7 |
|
3 | 3 |
Title: A collection of pre-processing functions |
4 | 4 |
Author: Benjamin Milo Bolstad <bmb@bmbolstad.com> |
5 | 5 |
Maintainer: Benjamin Milo Bolstad <bmb@bmbolstad.com> |
6 |
-Depends: methods |
|
7 | 6 |
Imports: stats |
8 | 7 |
Description: A library of core preprocessing routines |
9 | 8 |
License: LGPL (>= 2) |
... | ... |
@@ -32,8 +32,7 @@ rcModelPLMd(y,group.labels) |
32 | 32 |
Next the residuals for each row are compared to the group variable. In cases |
33 | 33 |
where there appears to be a significant relationship, the row-effect is "split" and separate row-effect parameters, one for each group, replace the single row effect. |
34 | 34 |
} |
35 |
-\seealso{ |
|
36 |
-} |
|
35 |
+\seealso{\code{\link{rcModelPLM}},\code{\link{rcModelPLMr}}} |
|
37 | 36 |
\examples{ |
38 | 37 |
col.effects <- c(10,11,10.5,12,9.5) |
39 | 38 |
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1)) |
... | ... |
@@ -63,4 +62,4 @@ matplot(rcModelPLMd(y,group.labels=c(1,1,1,2,2,2))$Residuals,col=c(rep("red",3), |
63 | 62 |
|
64 | 63 |
} |
65 | 64 |
\author{B. M. Bolstad \email{bmb@bmbolstad.com}} |
66 |
-\keyword{models} |
|
67 | 65 |
\ No newline at end of file |
66 |
+\keyword{models} |
... | ... |
@@ -50,8 +50,7 @@ rcModelWPLMrc(y, w) |
50 | 50 |
|
51 | 51 |
|
52 | 52 |
} |
53 |
-\seealso{ |
|
54 |
-} |
|
53 |
+\seealso{\code{\link{rcModelPLM}},\code{\link{rcModelPLMd}}} |
|
55 | 54 |
\examples{ |
56 | 55 |
col.effects <- c(10,11,10.5,12,9.5) |
57 | 56 |
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1)) |
... | ... |
@@ -116,4 +115,4 @@ matplot(y,type="l") |
116 | 115 |
|
117 | 116 |
} |
118 | 117 |
\author{B. M. Bolstad \email{bmb@bmbolstad.com}} |
119 |
-\keyword{models} |
|
120 | 118 |
\ No newline at end of file |
119 |
+\keyword{models} |
... | ... |
@@ -43,8 +43,7 @@ rcModelMedianPolish(y) |
43 | 43 |
|
44 | 44 |
The function \code{rcModelMedianPolish} uses the median polish algorithm. |
45 | 45 |
} |
46 |
-\seealso{ |
|
47 |
-} |
|
46 |
+\seealso{\code{\link{rcModelPLMr}},\code{\link{rcModelPLMd}}} |
|
48 | 47 |
\examples{ |
49 | 48 |
col.effects <- c(10,11,10.5,12,9.5) |
50 | 49 |
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1)) |
... | ... |
@@ -78,4 +77,4 @@ rcModelWPLM(y,w,row.effects=row.effects,input.scale=1.0) |
78 | 77 |
|
79 | 78 |
} |
80 | 79 |
\author{B. M. Bolstad \email{bmb@bmbolstad.com}} |
81 |
-\keyword{models} |
|
82 | 80 |
\ No newline at end of file |
81 |
+\keyword{models} |
... | ... |
@@ -47,8 +47,8 @@ subrcModelMedianPolish(y, group.labels) |
47 | 47 |
|
48 | 48 |
The function \code{rcModelMedianPolish} uses the median polish algorithm. |
49 | 49 |
} |
50 |
-\seealso{ |
|
51 |
-} |
|
50 |
+\seealso{\link{rcModelPLM}} |
|
51 |
+ |
|
52 | 52 |
\examples{ |
53 | 53 |
|
54 | 54 |
y <- matrix(c(10+rnorm(50),20+rnorm(50)),20,5,byrow=TRUE) |
... | ... |
@@ -77,7 +77,7 @@ SEXP R_rlm_rma_default_model(SEXP Y, SEXP PsiCode, SEXP PsiK, SEXP Scales){ |
77 | 77 |
double *weights; |
78 | 78 |
double *se; |
79 | 79 |
|
80 |
- double scale=-1.0; |
|
80 |
+ /* double scale=-1.0; */ |
|
81 | 81 |
double *scaleptr; |
82 | 82 |
|
83 | 83 |
double residSE; |
... | ... |
@@ -187,7 +187,7 @@ SEXP R_wrlm_rma_default_model(SEXP Y, SEXP PsiCode, SEXP PsiK, SEXP Weights, SEX |
187 | 187 |
double *weights; |
188 | 188 |
double *se; |
189 | 189 |
|
190 |
- double scale=-1.0; |
|
190 |
+ /* double scale=-1.0;*/ |
|
191 | 191 |
double *scaleptr; |
192 | 192 |
|
193 | 193 |
double residSE; |
... | ... |
@@ -303,8 +303,8 @@ SEXP R_medianpolish_rma_default_model(SEXP Y){ |
303 | 303 |
|
304 | 304 |
double *beta; |
305 | 305 |
double *residuals; |
306 |
- double *weights; |
|
307 |
- double *se; |
|
306 |
+ /*double *weights; |
|
307 |
+ double *se; */ |
|
308 | 308 |
|
309 | 309 |
double intercept; |
310 | 310 |
|
... | ... |
@@ -136,7 +136,7 @@ static double AvgSE(double *x, double mean, size_t length){ |
136 | 136 |
*/ |
137 | 137 |
|
138 | 138 |
void colaverage_no_copy(double *data, size_t rows, size_t cols, double *results, double *resultsSE){ |
139 |
- int i,j; |
|
139 |
+ int j; |
|
140 | 140 |
|
141 | 141 |
for (j = 0; j < cols; j++){ |
142 | 142 |
results[j] = Avg(&data[j*rows],rows); |
... | ... |
@@ -140,7 +140,7 @@ void logmedian(double *data, size_t rows, size_t cols, double *results, double * |
140 | 140 |
|
141 | 141 |
void logmedian_no_copy(double *data, size_t rows, size_t cols, double *results, double *resultsSE){ |
142 | 142 |
|
143 |
- size_t i,j; |
|
143 |
+ size_t j; |
|
144 | 144 |
|
145 | 145 |
for (j=0; j < cols; j++){ |
146 | 146 |
results[j] = log_median(&data[j*rows],rows); |
... | ... |
@@ -214,7 +214,7 @@ void colmedian(double *data, size_t rows, size_t cols, double *results, double * |
214 | 214 |
|
215 | 215 |
void colmedian_no_copy(double *data, size_t rows, size_t cols, double *results, double *resultsSE){ |
216 | 216 |
|
217 |
- size_t i,j; |
|
217 |
+ size_t j; |
|
218 | 218 |
|
219 | 219 |
for (j=0; j < cols; j++){ |
220 | 220 |
results[j] = colmedian_wrapper(&data[j*rows],rows); |