Name Mode Size
.github 040000
R 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 0 kb
NEWS.md 100644 3 kb
README.Rmd 100644 4 kb
README.md 100644 5 kb
README.md
# planet <img src="man/figures/logo.png" align="right" height = "139" /> <!-- badges: start --> [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4321633.svg)](https://doi.org/10.5281/zenodo.4321633) [![](https://img.shields.io/github/last-commit/GuangchuangYu/badger.svg)](https://github.com/GuangchuangYu/badger/commits/master) [![R build status](https://github.com/wvictor14/planet/workflows/R-CMD-check/badge.svg)](https://github.com/wvictor14/planet/actions) [![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://www.tidyverse.org/lifecycle/#stable) <!-- badges: end --> `planet` is an R package for inferring **ethnicity** (1), **gestational age** (2), and **cell composition** (3) from placental DNA methylation data. See full documentation at <https://victor.rbind.io/planet> ### Installation You can install `planet` from this github repo: ``` r devtools::install_github('wvictor14/planet') ``` ### Usage See [vignettes](https://victor.rbind.io/planet/articles) for more detailed usage. #### Example Data All functions in this package take as input DNAm data the 450k and EPIC DNAm microarray. For best performance I suggest providing unfiltered data normalized with noob and BMIQ. A processed example dataset, `plBetas`, is provided to show the format that this data should be in. The output of all `planet` functions is a `data.frame`. A quick example of each major function is illustrated with this example data: ``` r library(minfi) library(planet) #load example data data(plBetas) data(plPhenoData) # sample information ``` #### Predict Ethnicity ``` r predictEthnicity(plBetas) %>% head() #> 1860 of 1860 predictors present. #> # A tibble: 6 x 7 #> Sample_ID Predicted_ethni~ Predicted_ethni~ Prob_African Prob_Asian #> <chr> <chr> <chr> <dbl> <dbl> #> 1 GSM19449~ Caucasian Caucasian 0.00331 0.0164 #> 2 GSM19449~ Caucasian Caucasian 0.000772 0.000514 #> 3 GSM19449~ Caucasian Caucasian 0.000806 0.000699 #> 4 GSM19449~ Caucasian Caucasian 0.000883 0.000792 #> 5 GSM19449~ Caucasian Caucasian 0.000885 0.00130 #> 6 GSM19449~ Caucasian Caucasian 0.000852 0.000973 #> # ... with 2 more variables: Prob_Caucasian <dbl>, Highest_Prob <dbl> ``` #### Predict Gestational Age There are 3 gestational age clocks for placental DNA methylation data from Lee Y. et al. 2019 (2). To use a specific one, we can use the `type` argument in `predictAge`: ``` r predictAge(plBetas, type = 'RPC') %>% head() #> 558 of 558 predictors present. #> [1] 38.46528 33.09680 34.32520 35.50937 37.63910 36.77051 ``` #### Predict Cell Composition Reference data to infer cell composition on placental villi DNAm samples (3) can be used with cell deconvolution from minfi or EpiDISH. These are provided in this package as `plCellCpGsThird` and `plCellCpGsFirst` for third trimester (term) and first trimester samples, respectively. ``` r data('plCellCpGsThird') minfi:::projectCellType( # subset your data to cell cpgs plBetas[rownames(plCellCpGsThird),], # input the reference cpg matrix plCellCpGsThird, lessThanOne = FALSE) %>% head() #> Trophoblasts Stromal Hofbauer Endothelial nRBC #> GSM1944936 0.1091279 0.04891919 0.000000e+00 0.08983998 0.05294062 #> GSM1944939 0.2299918 0.00000000 -1.806592e-19 0.07888007 0.03374149 #> GSM1944942 0.1934287 0.03483540 0.000000e+00 0.09260353 0.02929310 #> GSM1944944 0.2239896 0.06249135 1.608645e-03 0.11040693 0.04447951 #> GSM1944946 0.1894152 0.07935955 0.000000e+00 0.10587439 0.05407587 #> GSM1944948 0.2045124 0.07657717 0.000000e+00 0.09871149 0.02269798 #> Syncytiotrophoblast #> GSM1944936 0.6979477 #> GSM1944939 0.6377822 #> GSM1944942 0.6350506 #> GSM1944944 0.5467642 #> GSM1944946 0.6022329 #> GSM1944948 0.6085825 ``` ### References 1. [**Yuan V**, Price EM, Del Gobbo G, Mostafavi S, Cox B, Binder AM, et al. Accurate ethnicity prediction from placental DNA methylation data. Epigenetics & Chromatin. 2019 Aug 9;12(1):51.](https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-019-0296-3) 2. [Lee Y, Choufani S, Weksberg R, Wilson SL, **Yuan V**, et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY). 2019;11(12):4238–4253. doi:10.18632/aging.102049](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628997/) 3. [**Yuan V**, Hui D, Yin Y, Peñaherrera MS, Beristain AG, Robinson WP. Cell-specific characterization of the placental methylome. BMC Genomics. 2021 Jan 6;22(1):6.](https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07186-6)