Name Mode Size
R 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.Rbuildignore 100755 0 kb
.gitignore 100755 0 kb
DESCRIPTION 100644 2 kb
LICENSE 100644 0 kb
LICENSE.md 100644 1 kb
NAMESPACE 100644 1 kb
NEWS.md 100644 2 kb
README.Rmd 100755 3 kb
README.md 100644 3 kb
README.md
<!-- README.md is generated from README.Rmd. Please edit that file --> # pairedGSEA <!-- badges: start --> [![Codecov test coverage](https://codecov.io/gh/shdam/pairedGSEA/branch/master/graph/badge.svg)](https://app.codecov.io/gh/shdam/pairedGSEA?branch=master) <!-- badges: end --> `pairedGSEA` is an R package that helps you to run a paired differential gene expression (DGE) and splicing (DGS) analysis. Providing a bulk RNA count data, `pairedGSEA` combines the results of `DESeq2` (DGE) and `DEXSeq` (DGS), aggregates the p-values to gene level, and allows you to run a subsequent gene set over-representation analysis using its implementation of the `fgsea::fora` function. ## Article `pairedGSEA` is published in [BMC Biology](https://doi.org/10.1186/s12915-023-01724-w). Please cite with `citation("pairedGSEA")` ## Installation Dependencies ``` r # Install Bioconductor dependencies if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("SummarizedExperiment", "S4Vectors", "DESeq2", "DEXSeq", "fgsea", "sva", "BiocParallel")) ``` Install `pairedGSEA` from Bioconductor ``` r if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("pairedGSEA") ``` Install development version from GitHub ``` r # Install pairedGSEA from github devtools::install_github("shdam/pairedGSEA", build_vignettes = TRUE) ``` ## Documentation To view documentation for the version of this package installed in your system, start R and enter: ``` r browseVignettes("pairedGSEA") ``` ## Usage Please see the User Guide vignette for a detailed description of usage. Here is a quick run-through of the functions: <br> Load example data. ``` r suppressPackageStartupMessages(library("SummarizedExperiment")) library("pairedGSEA") data("example_se") example_se #> class: SummarizedExperiment #> dim: 5611 6 #> metadata(0): #> assays(1): counts #> rownames(5611): ENSG00000282880:ENST00000635453 #> ENSG00000282880:ENST00000635195 ... ENSG00000249230:ENST00000504393 #> ENSG00000249244:ENST00000505994 #> rowData names(0): #> colnames(6): GSM1499784 GSM1499785 ... GSM1499791 GSM1499792 #> colData names(5): study id source final_description group_nr ``` Run paired differential analysis ``` r set.seed(500) # For reproducible results diff_results <- paired_diff( example_se, group_col = "group_nr", sample_col = "id", baseline = 1, case = 2, store_results = FALSE, quiet = TRUE ) #> No significant surrogate variables #> converting counts to integer mode #> Warning in DESeqDataSet(rse, design, ignoreRank = TRUE): some variables in #> design formula are characters, converting to factors ``` Over-representation analysis of results ``` r # Define gene sets in your preferred way gene_sets <- pairedGSEA::prepare_msigdb( species = "Homo sapiens", category = "C5", gene_id_type = "ensembl_gene" ) ora <- paired_ora( paired_diff_result = diff_results, gene_sets = gene_sets ) #> Running over-representation analyses #> Joining result ``` You can now plot the enrichment scores against each other and identify pathways of interest. ``` r plot_ora( ora, paired = TRUE # Available in version 1.1.0 and newer ) + ggplot2::theme_classic() ``` <img src="man/figures/README-plot-1.png" width="100%" /> ## Report issues If you have any issues or questions regarding the use of `pairedGSEA`, please do not hesitate to raise an issue on GitHub. In this way, others may also benefit from the answers and discussions.