% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nempi_main.r \name{nempi} \alias{nempi} \title{Main function for NEM based perturbation imputation.} \usage{ nempi( D, unknown = "", Gamma = NULL, type = "null", full = TRUE, verbose = FALSE, logtype = 2, null = TRUE, soft = TRUE, combi = 1, converged = 0.1, complete = TRUE, mw = NULL, max_iter = 100, keepphi = TRUE, start = NULL, phi = NULL, ... ) } \arguments{ \item{D}{either a binary effects matrix or log odds matrix as for Nested Effects Models (see package 'nem')} \item{unknown}{colname of samples without mutation data, E.g. ""} \item{Gamma}{matrix with expectations of perturbations, e.g. if you have a binary mutation matrix, just normalize the columns to have sum 1} \item{type}{"null": does not use the unknown samples for inference at the start, "random" uses them in a random fashion (not recommended)} \item{full}{if FALSE, does not change the known profiles} \item{verbose}{if TRUE gives more output during inference} \item{logtype}{log type for the log odds} \item{null}{if FALSE does not use a NULL node for uninformative samples} \item{soft}{if FALSE discretizes Gamma during the inference} \item{combi}{if combi > 1, uses a more complex algorithm to infer combinatorial perturbations (experimental)} \item{converged}{the absolute difference of log likelihood till convergence} \item{complete}{if TRUE uses the complete-data logliklihood (recommended for many E-genes)} \item{mw}{if NULL infers mixture weights, otherwise keeps them fixed} \item{max_iter}{maximum iterations of the EM algorithm} \item{keepphi}{if TRUE, uses the previous phi for the next inference, if FALSE always starts with start network (and empty and full)} \item{start}{starting network as adjacency matrix} \item{phi}{if not NULL uses only this phi and does not infer a new one} \item{...}{additional parameters for the nem function (see package mnem, function nem or mnem::nem)} } \value{ nempi object } \description{ Infers perturbations profiles based on a sparse perturbation matrix and differential gene expression as log odds } \examples{ D <- matrix(rnorm(1000*100), 1000, 100) colnames(D) <- sample(seq_len(5), 100, replace = TRUE) Gamma <- matrix(sample(c(0,1), 5*100, replace = TRUE, p = c(0.9, 0.1)), 5, 100) Gamma <- apply(Gamma, 2, function(x) return(x/sum(x))) Gamma[is.na(Gamma)] <- 0 rownames(Gamma) <- seq_len(5) result <- nempi(D, Gamma = Gamma) } \author{ Martin Pirkl }