% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nempi_main.r \name{classpi} \alias{classpi} \title{Classification} \usage{ classpi( D, unknown = "", full = TRUE, method = "svm", size = NULL, MaxNWts = 10000, ... ) } \arguments{ \item{D}{either a binary effects matrix or log odds matrix as for Nested Effects Models (see package 'nem')} \item{unknown}{colname of samples without mutation data, E.g. ""} \item{full}{if FALSE, does not change the known profiles} \item{method}{either one of svm, nn, rf} \item{size}{parameter for neural network (see package 'nnet')} \item{MaxNWts}{parameters for neural network (see package 'nnet')} \item{...}{additional parameters for mnem::nem} } \value{ plot } \description{ Builds and uses different classifiers to infer perturbation profiles } \examples{ D <- matrix(rnorm(1000*100), 1000, 100) colnames(D) <- sample(seq_len(5), 100, replace = TRUE) Gamma <- matrix(sample(c(0,1), 5*100, replace = TRUE, p = c(0.9, 0.1)), 5, 100) Gamma <- apply(Gamma, 2, function(x) return(x/sum(x))) Gamma[is.na(Gamma)] <- 0 rownames(Gamma) <- seq_len(5) result <- classpi(D) } \author{ Martin Pirkl }