Name Mode Size
.github 040000
R 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
DESCRIPTION 100644 1 kb
LICENSE 100644 34 kb
NAMESPACE 100644 3 kb
README 100644 0 kb
README.Rmd 100644 2 kb
README.md 100644 4 kb
README.md
# ncdfFlow: A package that provides HDF5 based storage for cytometry data. This package extends the `flowCore` infrastructure by storing the large volume of event-level data on disk as `HDF` format and only keeps the file handler and meta data in memory. Thus the memory consumption is significantly reduced. ### INSTALLATION ```r # First, install it from bionconductor so that it will pull all the dependent packages automatically library(BiocInstalller) bicLite(ncdfFlow) # or install the latest version from github using devtools package install.packages("devtools") library(devtools) #load it install_github("RGLab/ncdfFlow", ref="trunk") ``` ### Unix/Linux/Mac users To build the ncdfFlow package from source, make sure that HDF5 Library is present on your system: If HDF5 is installed to some non-standard location, you may pass the environment variable --with-hdf5 to point to the correct location of HDF5, for example, ```bash #install from github install_github('RGLab/ncdfFlow', ref='trunk', args='--configure-args="--with-hdf5=<path-to-hdf>"') #or install from locally downloaded tar ball R CMD INSTALL ncdfFlow_x.y.z.tar.gz --configure-args="--with-hdf5='<path-to-hdf>'" ``` under '/path/to', you should find "include" and "lib" sub-folders that contain HDF5 headers and shared libraries. Also, make sure add the path of `libhdf5.so` (should be `lib` subfolder of `<path-to-hdf>`) to your environment variable `LD_LIBRARY_PATH` so that it can be found at runtime. ```bash export LD_LIBRARY_PATH=<path-to-hdf>/lib:LD_LIBRARY_PATH ``` ### Create `ncdfFlowSet` object ```r library(ncdfFlow) #read from FCS files path <- system.file("extdata","compdata","data",package="flowCore") files <- list.files(path,full.names=TRUE)[1:3] fs <- read.ncdfFlowSet(files=files) #equivalent to flowCore::read.flowSet #or convert the existing flowSet into ncdfFlowSet data(GvHD) fs <- GvHD[1:4] fs <- ncdfFlowSet(fs) fs ``` ``` ## An ncdfFlowSet with 4 samples. ## NCDF file : /tmp/RtmpENFQmY/ncfs85d52869372e.nc ## An object of class 'AnnotatedDataFrame' ## rowNames: s5a01 s5a02 s5a03 s5a04 ## varLabels: Patient Visit ... name (5 total) ## varMetadata: labelDescription ## ## column names: ## FSC-H, SSC-H, FL1-H, FL2-H, FL3-H, FL2-A, FL4-H, Time ``` ### Use it as the same way as `flowSet` (except it is memory efficient and fast) ```r pData(fs) ``` ``` ## Patient Visit Days Grade name ## s5a01 5 1 -6 3 s5a01 ## s5a02 5 2 0 3 s5a02 ## s5a03 5 3 6 3 s5a03 ## s5a04 5 4 12 3 s5a04 ``` ```r sampleNames(fs) ``` ``` ## [1] "s5a01" "s5a02" "s5a03" "s5a04" ``` ```r keyword(fs,"FILENAME") ``` ``` ## FILENAME ## s5a01 "s5a01" ## s5a02 "s5a02" ## s5a03 "s5a03" ## s5a04 "s5a04" ``` ```r colnames(fs) ``` ``` ## [1] "FSC-H" "SSC-H" "FL1-H" "FL2-H" "FL3-H" "FL2-A" "FL4-H" "Time" ``` ```r length(fs) ``` ``` ## [1] 4 ``` ```r fs[[1]] ``` ``` ## flowFrame object 's5a01' ## with 3420 cells and 8 observables: ## name desc range minRange maxRange ## $P1 FSC-H FSC-Height 1024 0 1023 ## $P2 SSC-H SSC-Height 1024 0 1023 ## $P3 FL1-H CD15 FITC 1024 1 10000 ## $P4 FL2-H CD45 PE 1024 1 10000 ## $P5 FL3-H CD14 PerCP 1024 1 10000 ## $P6 FL2-A <NA> 1024 0 1023 ## $P7 FL4-H CD33 APC 1024 1 10000 ## $P8 Time Time (51.20 sec.) 1024 0 1023 ## 153 keywords are stored in the 'description' slot ``` ```r fs[2:3] ``` ``` ## An ncdfFlowSet with 2 samples. ## NCDF file : /tmp/RtmpENFQmY/ncfs85d52869372e.nc ## An object of class 'AnnotatedDataFrame' ## rowNames: s5a02 s5a03 ## varLabels: Patient Visit ... name (5 total) ## varMetadata: labelDescription ## ## column names: ## FSC-H, SSC-H, FL1-H, FL2-H, FL3-H, FL2-A, FL4-H, Time ```