Browse code

Updating pwiz to 3_0_21263

Steffen Neumann authored on 23/09/2021 12:34:25
Showing 1 changed files
1 1
new file mode 100755
... ...
@@ -0,0 +1,1046 @@
1
+//  Boost rational.hpp header file  ------------------------------------------//
2
+
3
+//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4
+//  distribute this software is granted provided this copyright notice appears
5
+//  in all copies. This software is provided "as is" without express or
6
+//  implied warranty, and with no claim as to its suitability for any purpose.
7
+
8
+// boostinspect:nolicense (don't complain about the lack of a Boost license)
9
+// (Paul Moore hasn't been in contact for years, so there's no way to change the
10
+// license.)
11
+
12
+//  See http://www.boost.org/libs/rational for documentation.
13
+
14
+//  Credits:
15
+//  Thanks to the boost mailing list in general for useful comments.
16
+//  Particular contributions included:
17
+//    Andrew D Jewell, for reminding me to take care to avoid overflow
18
+//    Ed Brey, for many comments, including picking up on some dreadful typos
19
+//    Stephen Silver contributed the test suite and comments on user-defined
20
+//    IntType
21
+//    Nickolay Mladenov, for the implementation of operator+=
22
+
23
+//  Revision History
24
+//  12 Nov 20  Fix operators to work with C++20 rules (Glen Joseph Fernandes)
25
+//  02 Sep 13  Remove unneeded forward declarations; tweak private helper
26
+//             function (Daryle Walker)
27
+//  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
28
+//             (Daryle Walker)
29
+//  27 Aug 13  Add cross-version constructor template, plus some private helper
30
+//             functions; add constructor to exception class to take custom
31
+//             messages (Daryle Walker)
32
+//  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
33
+//  05 May 12  Reduced use of implicit gcd (Mario Lang)
34
+//  05 Nov 06  Change rational_cast to not depend on division between different
35
+//             types (Daryle Walker)
36
+//  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;
37
+//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
38
+//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
39
+//             divisions; the rational-value version now uses continued fraction
40
+//             expansion to avoid overflows, for bug #798357 (Daryle Walker)
41
+//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
42
+//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
43
+//             (Joaquín M López Muñoz)
44
+//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
45
+//  28 Sep 02  Use _left versions of operators from operators.hpp
46
+//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
47
+//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
48
+//  05 Feb 01  Update operator>> to tighten up input syntax
49
+//  05 Feb 01  Final tidy up of gcd code prior to the new release
50
+//  27 Jan 01  Recode abs() without relying on abs(IntType)
51
+//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
52
+//             tidy up a number of areas, use newer features of operators.hpp
53
+//             (reduces space overhead to zero), add operator!,
54
+//             introduce explicit mixed-mode arithmetic operations
55
+//  12 Jan 01  Include fixes to handle a user-defined IntType better
56
+//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
57
+//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
58
+//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
59
+//             affected (Beman Dawes)
60
+//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
61
+//  14 Dec 99  Modifications based on comments from the boost list
62
+//  09 Dec 99  Initial Version (Paul Moore)
63
+
64
+#ifndef BOOST_RATIONAL_HPP
65
+#define BOOST_RATIONAL_HPP
66
+
67
+#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
68
+#ifndef BOOST_NO_IOSTREAM
69
+#include <iomanip>               // for std::setw
70
+#include <ios>                   // for std::noskipws, streamsize
71
+#include <istream>               // for std::istream
72
+#include <ostream>               // for std::ostream
73
+#include <sstream>               // for std::ostringstream
74
+#endif
75
+#include <cstddef>               // for NULL
76
+#include <stdexcept>             // for std::domain_error
77
+#include <string>                // for std::string implicit constructor
78
+#include <cstdlib>               // for std::abs
79
+#include <boost/call_traits.hpp> // for boost::call_traits
80
+#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81
+#include <boost/assert.hpp>      // for BOOST_ASSERT
82
+#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83
+#include <limits>                // for std::numeric_limits
84
+#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
85
+#include <boost/throw_exception.hpp>
86
+#include <boost/utility/enable_if.hpp>
87
+#include <boost/type_traits/is_convertible.hpp>
88
+#include <boost/type_traits/is_class.hpp>
89
+#include <boost/type_traits/is_same.hpp>
90
+#include <boost/type_traits/is_array.hpp>
91
+
92
+// Control whether depreciated GCD and LCM functions are included (default: yes)
93
+#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
94
+#define BOOST_CONTROL_RATIONAL_HAS_GCD  1
95
+#endif
96
+
97
+namespace boost {
98
+
99
+#if BOOST_CONTROL_RATIONAL_HAS_GCD
100
+template <typename IntType>
101
+IntType gcd(IntType n, IntType m)
102
+{
103
+    // Defer to the version in Boost.Integer
104
+    return integer::gcd( n, m );
105
+}
106
+
107
+template <typename IntType>
108
+IntType lcm(IntType n, IntType m)
109
+{
110
+    // Defer to the version in Boost.Integer
111
+    return integer::lcm( n, m );
112
+}
113
+#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
114
+
115
+namespace rational_detail{
116
+
117
+   template <class FromInt, class ToInt, typename Enable = void>
118
+   struct is_compatible_integer;
119
+
120
+   template <class FromInt, class ToInt>
121
+   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
122
+   {
123
+      BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
124
+         && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
125
+         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
126
+         && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
127
+         && is_convertible<FromInt, ToInt>::value)
128
+         || is_same<FromInt, ToInt>::value)
129
+         || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
130
+   };
131
+
132
+   template <class FromInt, class ToInt>
133
+   struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
134
+   {
135
+      BOOST_STATIC_CONSTANT(bool, value = false);
136
+   };
137
+
138
+   template <class FromInt, class ToInt, typename Enable = void>
139
+   struct is_backward_compatible_integer;
140
+
141
+   template <class FromInt, class ToInt>
142
+   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
143
+   {
144
+      BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
145
+         && !is_compatible_integer<FromInt, ToInt>::value
146
+         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
147
+         && is_convertible<FromInt, ToInt>::value));
148
+   };
149
+
150
+   template <class FromInt, class ToInt>
151
+   struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
152
+   {
153
+      BOOST_STATIC_CONSTANT(bool, value = false);
154
+   };
155
+}
156
+
157
+class bad_rational : public std::domain_error
158
+{
159
+public:
160
+    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
161
+    explicit bad_rational( char const *what ) : std::domain_error( what ) {}
162
+};
163
+
164
+template <typename IntType>
165
+class rational
166
+{
167
+    // Class-wide pre-conditions
168
+    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
169
+
170
+    // Helper types
171
+    typedef typename boost::call_traits<IntType>::param_type param_type;
172
+
173
+    struct helper { IntType parts[2]; };
174
+    typedef IntType (helper::* bool_type)[2];
175
+
176
+public:
177
+    // Component type
178
+    typedef IntType int_type;
179
+
180
+    BOOST_CONSTEXPR
181
+    rational() : num(0), den(1) {}
182
+
183
+    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
184
+    BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
185
+       rational_detail::is_compatible_integer<T, IntType>::value
186
+    >::type const* = 0) : num(n), den(1) {}
187
+
188
+    template <class T, class U>
189
+    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
190
+       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
191
+    >::type const* = 0) : num(n), den(d) {
192
+       normalize();
193
+    }
194
+
195
+    template < typename NewType >
196
+    BOOST_CONSTEXPR explicit
197
+       rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
198
+       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
199
+       int_type(r.denominator())) ? r.denominator() :
200
+       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
201
+
202
+    template < typename NewType >
203
+    BOOST_CONSTEXPR explicit
204
+       rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
205
+       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
206
+       int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
207
+       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
208
+    // Default copy constructor and assignment are fine
209
+
210
+    // Add assignment from IntType
211
+    template <class T>
212
+    BOOST_CXX14_CONSTEXPR typename enable_if_c<
213
+       rational_detail::is_compatible_integer<T, IntType>::value, rational &
214
+    >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
215
+
216
+    // Assign in place
217
+    template <class T, class U>
218
+    BOOST_CXX14_CONSTEXPR typename enable_if_c<
219
+       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
220
+    >::type assign(const T& n, const U& d)
221
+    {
222
+       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
223
+    }
224
+    //
225
+    // The following overloads should probably *not* be provided - 
226
+    // but are provided for backwards compatibity reasons only.
227
+    // These allow for construction/assignment from types that
228
+    // are wider than IntType only if there is an implicit
229
+    // conversion from T to IntType, they will throw a bad_rational
230
+    // if the conversion results in loss of precision or undefined behaviour.
231
+    //
232
+    template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
233
+    BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<
234
+       rational_detail::is_backward_compatible_integer<T, IntType>::value
235
+    >::type const* = 0)
236
+    {
237
+       assign(n, static_cast<T>(1));
238
+    }
239
+    template <class T, class U>
240
+    BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
241
+       (!rational_detail::is_compatible_integer<T, IntType>::value
242
+       || !rational_detail::is_compatible_integer<U, IntType>::value)
243
+       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
244
+       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
245
+       && is_convertible<T, IntType>::value &&
246
+       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
247
+       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
248
+       && is_convertible<U, IntType>::value
249
+    >::type const* = 0)
250
+    {
251
+       assign(n, d);
252
+    }
253
+    template <class T>
254
+    BOOST_CXX14_CONSTEXPR typename enable_if_c<
255
+       std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
256
+       && !rational_detail::is_compatible_integer<T, IntType>::value
257
+       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
258
+       && is_convertible<T, IntType>::value,
259
+       rational &
260
+    >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
261
+
262
+    template <class T, class U>
263
+    BOOST_CXX14_CONSTEXPR typename enable_if_c<
264
+       (!rational_detail::is_compatible_integer<T, IntType>::value
265
+          || !rational_detail::is_compatible_integer<U, IntType>::value)
266
+       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
267
+       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
268
+       && is_convertible<T, IntType>::value &&
269
+       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
270
+       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
271
+       && is_convertible<U, IntType>::value,
272
+       rational &
273
+    >::type assign(const T& n, const U& d)
274
+    {
275
+       if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
276
+          BOOST_THROW_EXCEPTION(bad_rational());
277
+       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
278
+    }
279
+
280
+    // Access to representation
281
+    BOOST_CONSTEXPR
282
+    const IntType& numerator() const { return num; }
283
+    BOOST_CONSTEXPR
284
+    const IntType& denominator() const { return den; }
285
+
286
+    // Arithmetic assignment operators
287
+    BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);
288
+    BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);
289
+    BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);
290
+    BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);
291
+
292
+    template <class T>
293
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
294
+    {
295
+       num += i * den;
296
+       return *this;
297
+    }
298
+    template <class T>
299
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
300
+    {
301
+       num -= i * den;
302
+       return *this;
303
+    }
304
+    template <class T>
305
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
306
+    {
307
+       // Avoid overflow and preserve normalization
308
+       IntType gcd = integer::gcd(static_cast<IntType>(i), den);
309
+       num *= i / gcd;
310
+       den /= gcd;
311
+       return *this;
312
+    }
313
+    template <class T>
314
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
315
+    {
316
+       // Avoid repeated construction
317
+       IntType const zero(0);
318
+
319
+       if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
320
+       if(num == zero) return *this;
321
+
322
+       // Avoid overflow and preserve normalization
323
+       IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
324
+       num /= gcd;
325
+       den *= i / gcd;
326
+
327
+       if(den < zero) {
328
+          num = -num;
329
+          den = -den;
330
+       }
331
+
332
+       return *this;
333
+    }
334
+
335
+    // Increment and decrement
336
+    BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }
337
+    BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }
338
+
339
+    BOOST_CXX14_CONSTEXPR rational operator++(int)
340
+    {
341
+       rational t(*this);
342
+       ++(*this);
343
+       return t;
344
+    }
345
+    BOOST_CXX14_CONSTEXPR rational operator--(int)
346
+    {
347
+       rational t(*this);
348
+       --(*this);
349
+       return t;
350
+    }
351
+
352
+    // Operator not
353
+    BOOST_CONSTEXPR
354
+    bool operator!() const { return !num; }
355
+
356
+    // Boolean conversion
357
+    
358
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
359
+    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
360
+    // following, hence we selectively disable that option for the
361
+    // offending memfun.
362
+#pragma parse_mfunc_templ off
363
+#endif
364
+
365
+    BOOST_CONSTEXPR
366
+    operator bool_type() const { return operator !() ? 0 : &helper::parts; }
367
+
368
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
369
+#pragma parse_mfunc_templ reset
370
+#endif
371
+
372
+    // Comparison operators
373
+    BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;
374
+    BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }
375
+    BOOST_CONSTEXPR
376
+    bool operator== (const rational& r) const;
377
+
378
+    template <class T>
379
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
380
+    {
381
+       // Avoid repeated construction
382
+       int_type const  zero(0);
383
+
384
+       // Break value into mixed-fraction form, w/ always-nonnegative remainder
385
+       BOOST_ASSERT(this->den > zero);
386
+       int_type  q = this->num / this->den, r = this->num % this->den;
387
+       while(r < zero)  { r += this->den; --q; }
388
+
389
+       // Compare with just the quotient, since the remainder always bumps the
390
+       // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
391
+       // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
392
+       // q >= i + 1 > i; therefore n/d < i iff q < i.]
393
+       return q < i;
394
+    }
395
+    template <class T>
396
+    BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
397
+    {
398
+       return operator==(i) ? false : !operator<(i);
399
+    }
400
+    template <class T>
401
+    BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
402
+    {
403
+       return ((den == IntType(1)) && (num == i));
404
+    }
405
+
406
+private:
407
+    // Implementation - numerator and denominator (normalized).
408
+    // Other possibilities - separate whole-part, or sign, fields?
409
+    IntType num;
410
+    IntType den;
411
+
412
+    // Helper functions
413
+    static BOOST_CONSTEXPR
414
+    int_type inner_gcd( param_type a, param_type b, int_type const &zero =
415
+     int_type(0) )
416
+    { return b == zero ? a : inner_gcd(b, a % b, zero); }
417
+
418
+    static BOOST_CONSTEXPR
419
+    int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
420
+    { return x < zero ? -x : +x; }
421
+
422
+    // Representation note: Fractions are kept in normalized form at all
423
+    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
424
+    // In particular, note that the implementation of abs() below relies
425
+    // on den always being positive.
426
+    BOOST_CXX14_CONSTEXPR bool test_invariant() const;
427
+    BOOST_CXX14_CONSTEXPR void normalize();
428
+
429
+    static BOOST_CONSTEXPR
430
+    bool is_normalized( param_type n, param_type d, int_type const &zero =
431
+     int_type(0), int_type const &one = int_type(1) )
432
+    {
433
+        return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
434
+         d, zero), zero ) == one;
435
+    }
436
+    //
437
+    // Conversion checks:
438
+    //
439
+    // (1) From an unsigned type with more digits than IntType:
440
+    //
441
+    template <class T>
442
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
443
+    {
444
+       return val < (T(1) << std::numeric_limits<IntType>::digits);
445
+    }
446
+    //
447
+    // (2) From a signed type with more digits than IntType, and IntType also signed:
448
+    //
449
+    template <class T>
450
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
451
+    {
452
+       // Note that this check assumes IntType has a 2's complement representation,
453
+       // we don't want to try to convert a std::numeric_limits<IntType>::min() to
454
+       // a T because that conversion may not be allowed (this happens when IntType
455
+       // is from Boost.Multiprecision).
456
+       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
457
+    }
458
+    //
459
+    // (3) From a signed type with more digits than IntType, and IntType unsigned:
460
+    //
461
+    template <class T>
462
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
463
+    {
464
+       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
465
+    }
466
+    //
467
+    // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
468
+    //
469
+    template <class T>
470
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
471
+    {
472
+       return val >= 0;
473
+    }
474
+    //
475
+    // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
476
+    //
477
+    template <class T>
478
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
479
+    {
480
+       return true;
481
+    }
482
+    //
483
+    // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
484
+    //
485
+    template <class T>
486
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
487
+    {
488
+       return true;
489
+    }
490
+    //
491
+    // (7) From an signed type with fewer digits than IntType, and IntType signed:
492
+    //
493
+    template <class T>
494
+    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
495
+    {
496
+       return true;
497
+    }
498
+};
499
+
500
+// Unary plus and minus
501
+template <typename IntType>
502
+BOOST_CONSTEXPR
503
+inline rational<IntType> operator+ (const rational<IntType>& r)
504
+{
505
+    return r;
506
+}
507
+
508
+template <typename IntType>
509
+BOOST_CXX14_CONSTEXPR
510
+inline rational<IntType> operator- (const rational<IntType>& r)
511
+{
512
+    return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
513
+}
514
+
515
+// Arithmetic assignment operators
516
+template <typename IntType>
517
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
518
+{
519
+    // This calculation avoids overflow, and minimises the number of expensive
520
+    // calculations. Thanks to Nickolay Mladenov for this algorithm.
521
+    //
522
+    // Proof:
523
+    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
524
+    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
525
+    //
526
+    // The result is (a*d1 + c*b1) / (b1*d1*g).
527
+    // Now we have to normalize this ratio.
528
+    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
529
+    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
530
+    // But since gcd(a,b1)=1 we have h=1.
531
+    // Similarly h|d1 leads to h=1.
532
+    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
533
+    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
534
+    // Which proves that instead of normalizing the result, it is better to
535
+    // divide num and den by gcd((a*d1 + c*b1), g)
536
+
537
+    // Protect against self-modification
538
+    IntType r_num = r.num;
539
+    IntType r_den = r.den;
540
+
541
+    IntType g = integer::gcd(den, r_den);
542
+    den /= g;  // = b1 from the calculations above
543
+    num = num * (r_den / g) + r_num * den;
544
+    g = integer::gcd(num, g);
545
+    num /= g;
546
+    den *= r_den/g;
547
+
548
+    return *this;
549
+}
550
+
551
+template <typename IntType>
552
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
553
+{
554
+    // Protect against self-modification
555
+    IntType r_num = r.num;
556
+    IntType r_den = r.den;
557
+
558
+    // This calculation avoids overflow, and minimises the number of expensive
559
+    // calculations. It corresponds exactly to the += case above
560
+    IntType g = integer::gcd(den, r_den);
561
+    den /= g;
562
+    num = num * (r_den / g) - r_num * den;
563
+    g = integer::gcd(num, g);
564
+    num /= g;
565
+    den *= r_den/g;
566
+
567
+    return *this;
568
+}
569
+
570
+template <typename IntType>
571
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
572
+{
573
+    // Protect against self-modification
574
+    IntType r_num = r.num;
575
+    IntType r_den = r.den;
576
+
577
+    // Avoid overflow and preserve normalization
578
+    IntType gcd1 = integer::gcd(num, r_den);
579
+    IntType gcd2 = integer::gcd(r_num, den);
580
+    num = (num/gcd1) * (r_num/gcd2);
581
+    den = (den/gcd2) * (r_den/gcd1);
582
+    return *this;
583
+}
584
+
585
+template <typename IntType>
586
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
587
+{
588
+    // Protect against self-modification
589
+    IntType r_num = r.num;
590
+    IntType r_den = r.den;
591
+
592
+    // Avoid repeated construction
593
+    IntType zero(0);
594
+
595
+    // Trap division by zero
596
+    if (r_num == zero)
597
+        BOOST_THROW_EXCEPTION(bad_rational());
598
+    if (num == zero)
599
+        return *this;
600
+
601
+    // Avoid overflow and preserve normalization
602
+    IntType gcd1 = integer::gcd(num, r_num);
603
+    IntType gcd2 = integer::gcd(r_den, den);
604
+    num = (num/gcd1) * (r_den/gcd2);
605
+    den = (den/gcd2) * (r_num/gcd1);
606
+
607
+    if (den < zero) {
608
+        num = -num;
609
+        den = -den;
610
+    }
611
+    return *this;
612
+}
613
+
614
+
615
+//
616
+// Non-member operators: previously these were provided by Boost.Operator, but these had a number of
617
+// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
618
+//
619
+// rational<int> r(3);
620
+// assert(r == 3.5); // compiles and passes!!
621
+//
622
+// Happens to be allowed as well :-(
623
+//
624
+// There are three possible cases for each operator:
625
+// 1) rational op rational.
626
+// 2) rational op integer
627
+// 3) integer op rational
628
+// Cases (1) and (2) are folded into the one function.
629
+//
630
+template <class IntType, class Arg>
631
+BOOST_CXX14_CONSTEXPR
632
+inline typename boost::enable_if_c <
633
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
634
+   operator + (const rational<IntType>& a, const Arg& b)
635
+{
636
+      rational<IntType> t(a);
637
+      return t += b;
638
+}
639
+template <class Arg, class IntType>
640
+BOOST_CXX14_CONSTEXPR
641
+inline typename boost::enable_if_c <
642
+   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
643
+   operator + (const Arg& b, const rational<IntType>& a)
644
+{
645
+      rational<IntType> t(a);
646
+      return t += b;
647
+}
648
+
649
+template <class IntType, class Arg>
650
+BOOST_CXX14_CONSTEXPR
651
+inline typename boost::enable_if_c <
652
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
653
+   operator - (const rational<IntType>& a, const Arg& b)
654
+{
655
+      rational<IntType> t(a);
656
+      return t -= b;
657
+}
658
+template <class Arg, class IntType>
659
+BOOST_CXX14_CONSTEXPR
660
+inline typename boost::enable_if_c <
661
+   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
662
+   operator - (const Arg& b, const rational<IntType>& a)
663
+{
664
+      rational<IntType> t(a);
665
+      return -(t -= b);
666
+}
667
+
668
+template <class IntType, class Arg>
669
+BOOST_CXX14_CONSTEXPR
670
+inline typename boost::enable_if_c <
671
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
672
+   operator * (const rational<IntType>& a, const Arg& b)
673
+{
674
+      rational<IntType> t(a);
675
+      return t *= b;
676
+}
677
+template <class Arg, class IntType>
678
+BOOST_CXX14_CONSTEXPR
679
+inline typename boost::enable_if_c <
680
+   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
681
+   operator * (const Arg& b, const rational<IntType>& a)
682
+{
683
+      rational<IntType> t(a);
684
+      return t *= b;
685
+}
686
+
687
+template <class IntType, class Arg>
688
+BOOST_CXX14_CONSTEXPR
689
+inline typename boost::enable_if_c <
690
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
691
+   operator / (const rational<IntType>& a, const Arg& b)
692
+{
693
+      rational<IntType> t(a);
694
+      return t /= b;
695
+}
696
+template <class Arg, class IntType>
697
+BOOST_CXX14_CONSTEXPR
698
+inline typename boost::enable_if_c <
699
+   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
700
+   operator / (const Arg& b, const rational<IntType>& a)
701
+{
702
+      rational<IntType> t(b);
703
+      return t /= a;
704
+}
705
+
706
+template <class IntType, class Arg>
707
+BOOST_CXX14_CONSTEXPR
708
+inline typename boost::enable_if_c <
709
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
710
+   operator <= (const rational<IntType>& a, const Arg& b)
711
+{
712
+      return !a.operator>(b);
713
+}
714
+template <class Arg, class IntType>
715
+BOOST_CXX14_CONSTEXPR
716
+inline typename boost::enable_if_c <
717
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
718
+   operator <= (const Arg& b, const rational<IntType>& a)
719
+{
720
+      return a >= b;
721
+}
722
+
723
+template <class IntType, class Arg>
724
+BOOST_CXX14_CONSTEXPR
725
+inline typename boost::enable_if_c <
726
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
727
+   operator >= (const rational<IntType>& a, const Arg& b)
728
+{
729
+      return !a.operator<(b);
730
+}
731
+template <class Arg, class IntType>
732
+BOOST_CXX14_CONSTEXPR
733
+inline typename boost::enable_if_c <
734
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
735
+   operator >= (const Arg& b, const rational<IntType>& a)
736
+{
737
+      return a <= b;
738
+}
739
+
740
+template <class IntType, class Arg>
741
+BOOST_CONSTEXPR
742
+inline typename boost::enable_if_c <
743
+   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
744
+   operator != (const rational<IntType>& a, const Arg& b)
745
+{
746
+      return !a.operator==(b);
747
+}
748
+template <class Arg, class IntType>
749
+BOOST_CONSTEXPR
750
+inline typename boost::enable_if_c <
751
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
752
+   operator != (const Arg& b, const rational<IntType>& a)
753
+{
754
+      return !(b == a);
755
+}
756
+
757
+template <class Arg, class IntType>
758
+BOOST_CXX14_CONSTEXPR
759
+inline typename boost::enable_if_c <
760
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
761
+   operator < (const Arg& b, const rational<IntType>& a)
762
+{
763
+      return a.operator>(b);
764
+}
765
+template <class Arg, class IntType>
766
+BOOST_CXX14_CONSTEXPR
767
+inline typename boost::enable_if_c <
768
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
769
+   operator > (const Arg& b, const rational<IntType>& a)
770
+{
771
+      return a.operator<(b);
772
+}
773
+template <class Arg, class IntType>
774
+BOOST_CONSTEXPR
775
+inline typename boost::enable_if_c <
776
+   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
777
+   operator == (const Arg& b, const rational<IntType>& a)
778
+{
779
+      return a.operator==(b);
780
+}
781
+
782
+// Comparison operators
783
+template <typename IntType>
784
+BOOST_CXX14_CONSTEXPR
785
+bool rational<IntType>::operator< (const rational<IntType>& r) const
786
+{
787
+    // Avoid repeated construction
788
+    int_type const  zero( 0 );
789
+
790
+    // This should really be a class-wide invariant.  The reason for these
791
+    // checks is that for 2's complement systems, INT_MIN has no corresponding
792
+    // positive, so negating it during normalization keeps it INT_MIN, which
793
+    // is bad for later calculations that assume a positive denominator.
794
+    BOOST_ASSERT( this->den > zero );
795
+    BOOST_ASSERT( r.den > zero );
796
+
797
+    // Determine relative order by expanding each value to its simple continued
798
+    // fraction representation using the Euclidian GCD algorithm.
799
+    struct { int_type  n, d, q, r; }
800
+     ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
801
+     static_cast<int_type>(this->num % this->den) },
802
+     rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
803
+     static_cast<int_type>(r.num % r.den) };
804
+    unsigned  reverse = 0u;
805
+
806
+    // Normalize negative moduli by repeatedly adding the (positive) denominator
807
+    // and decrementing the quotient.  Later cycles should have all positive
808
+    // values, so this only has to be done for the first cycle.  (The rules of
809
+    // C++ require a nonnegative quotient & remainder for a nonnegative dividend
810
+    // & positive divisor.)
811
+    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
812
+    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
813
+
814
+    // Loop through and compare each variable's continued-fraction components
815
+    for ( ;; )
816
+    {
817
+        // The quotients of the current cycle are the continued-fraction
818
+        // components.  Comparing two c.f. is comparing their sequences,
819
+        // stopping at the first difference.
820
+        if ( ts.q != rs.q )
821
+        {
822
+            // Since reciprocation changes the relative order of two variables,
823
+            // and c.f. use reciprocals, the less/greater-than test reverses
824
+            // after each index.  (Start w/ non-reversed @ whole-number place.)
825
+            return reverse ? ts.q > rs.q : ts.q < rs.q;
826
+        }
827
+
828
+        // Prepare the next cycle
829
+        reverse ^= 1u;
830
+
831
+        if ( (ts.r == zero) || (rs.r == zero) )
832
+        {
833
+            // At least one variable's c.f. expansion has ended
834
+            break;
835
+        }
836
+
837
+        ts.n = ts.d;         ts.d = ts.r;
838
+        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
839
+        rs.n = rs.d;         rs.d = rs.r;
840
+        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
841
+    }
842
+
843
+    // Compare infinity-valued components for otherwise equal sequences
844
+    if ( ts.r == rs.r )
845
+    {
846
+        // Both remainders are zero, so the next (and subsequent) c.f.
847
+        // components for both sequences are infinity.  Therefore, the sequences
848
+        // and their corresponding values are equal.
849
+        return false;
850
+    }
851
+    else
852
+    {
853
+#ifdef BOOST_MSVC
854
+#pragma warning(push)
855
+#pragma warning(disable:4800)
856
+#endif
857
+        // Exactly one of the remainders is zero, so all following c.f.
858
+        // components of that variable are infinity, while the other variable
859
+        // has a finite next c.f. component.  So that other variable has the
860
+        // lesser value (modulo the reversal flag!).
861
+        return ( ts.r != zero ) != static_cast<bool>( reverse );
862
+#ifdef BOOST_MSVC
863
+#pragma warning(pop)
864
+#endif
865
+    }
866
+}
867
+
868
+template <typename IntType>
869
+BOOST_CONSTEXPR
870
+inline bool rational<IntType>::operator== (const rational<IntType>& r) const
871
+{
872
+    return ((num == r.num) && (den == r.den));
873
+}
874
+
875
+// Invariant check
876
+template <typename IntType>
877
+BOOST_CXX14_CONSTEXPR
878
+inline bool rational<IntType>::test_invariant() const
879
+{
880
+    return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
881
+     int_type(1) );
882
+}
883
+
884
+// Normalisation
885
+template <typename IntType>
886
+BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize()
887
+{
888
+    // Avoid repeated construction
889
+    IntType zero(0);
890
+
891