src/boost/rational.hpp
60c84217
 //  Boost rational.hpp header file  ------------------------------------------//
 
 //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
 //  distribute this software is granted provided this copyright notice appears
 //  in all copies. This software is provided "as is" without express or
 //  implied warranty, and with no claim as to its suitability for any purpose.
 
 // boostinspect:nolicense (don't complain about the lack of a Boost license)
 // (Paul Moore hasn't been in contact for years, so there's no way to change the
 // license.)
 
 //  See http://www.boost.org/libs/rational for documentation.
 
 //  Credits:
 //  Thanks to the boost mailing list in general for useful comments.
 //  Particular contributions included:
 //    Andrew D Jewell, for reminding me to take care to avoid overflow
 //    Ed Brey, for many comments, including picking up on some dreadful typos
 //    Stephen Silver contributed the test suite and comments on user-defined
 //    IntType
 //    Nickolay Mladenov, for the implementation of operator+=
 
 //  Revision History
 //  05 Nov 06  Change rational_cast to not depend on division between different
 //             types (Daryle Walker)
 //  04 Nov 06  Off-load GCD and LCM to Boost.Math; add some invariant checks;
 //             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
 //  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
 //             divisions; the rational-value version now uses continued fraction
 //             expansion to avoid overflows, for bug #798357 (Daryle Walker)
 //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaqu�n M L�pez Mu�oz)
 //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
 //             (Joaqu�n M L�pez Mu�oz)
 //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
 //  28 Sep 02  Use _left versions of operators from operators.hpp
 //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
 //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
 //  05 Feb 01  Update operator>> to tighten up input syntax
 //  05 Feb 01  Final tidy up of gcd code prior to the new release
 //  27 Jan 01  Recode abs() without relying on abs(IntType)
 //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
 //             tidy up a number of areas, use newer features of operators.hpp
 //             (reduces space overhead to zero), add operator!,
 //             introduce explicit mixed-mode arithmetic operations
 //  12 Jan 01  Include fixes to handle a user-defined IntType better
 //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
 //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
 //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
 //             affected (Beman Dawes)
 //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
 //  14 Dec 99  Modifications based on comments from the boost list
 //  09 Dec 99  Initial Version (Paul Moore)
 
 #ifndef BOOST_RATIONAL_HPP
 #define BOOST_RATIONAL_HPP
 
 #include <iostream>              // for std::istream and std::ostream
 #include <ios>                   // for std::noskipws
 #include <stdexcept>             // for std::domain_error
 #include <string>                // for std::string implicit constructor
 #include <boost/operators.hpp>   // for boost::addable etc
 #include <cstdlib>               // for std::abs
 #include <boost/call_traits.hpp> // for boost::call_traits
 #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
 #include <boost/assert.hpp>      // for BOOST_ASSERT
 #include <boost/math/common_factor_rt.hpp>  // for boost::math::gcd, lcm
 #include <limits>                // for std::numeric_limits
 #include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
 
 // Control whether depreciated GCD and LCM functions are included (default: yes)
 #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
 #define BOOST_CONTROL_RATIONAL_HAS_GCD  1
 #endif
 
 namespace boost {
 
 #if BOOST_CONTROL_RATIONAL_HAS_GCD
 template <typename IntType>
 IntType gcd(IntType n, IntType m)
 {
     // Defer to the version in Boost.Math
     return math::gcd( n, m );
 }
 
 template <typename IntType>
 IntType lcm(IntType n, IntType m)
 {
     // Defer to the version in Boost.Math
     return math::lcm( n, m );
 }
 #endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
 
 class bad_rational : public std::domain_error
 {
 public:
     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
 };
 
 template <typename IntType>
 class rational;
 
 template <typename IntType>
 rational<IntType> abs(const rational<IntType>& r);
 
 template <typename IntType>
 class rational :
     less_than_comparable < rational<IntType>,
     equality_comparable < rational<IntType>,
     less_than_comparable2 < rational<IntType>, IntType,
     equality_comparable2 < rational<IntType>, IntType,
     addable < rational<IntType>,
     subtractable < rational<IntType>,
     multipliable < rational<IntType>,
     dividable < rational<IntType>,
     addable2 < rational<IntType>, IntType,
     subtractable2 < rational<IntType>, IntType,
     subtractable2_left < rational<IntType>, IntType,
     multipliable2 < rational<IntType>, IntType,
     dividable2 < rational<IntType>, IntType,
     dividable2_left < rational<IntType>, IntType,
     incrementable < rational<IntType>,
     decrementable < rational<IntType>
     > > > > > > > > > > > > > > > >
 {
     // Class-wide pre-conditions
     BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
 
     // Helper types
     typedef typename boost::call_traits<IntType>::param_type param_type;
 
     struct helper { IntType parts[2]; };
     typedef IntType (helper::* bool_type)[2];
 
 public:
     typedef IntType int_type;
     rational() : num(0), den(1) {}
     rational(param_type n) : num(n), den(1) {}
     rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
 
     // Default copy constructor and assignment are fine
 
     // Add assignment from IntType
     rational& operator=(param_type n) { return assign(n, 1); }
 
     // Assign in place
     rational& assign(param_type n, param_type d);
 
     // Access to representation
     IntType numerator() const { return num; }
     IntType denominator() const { return den; }
 
     // Arithmetic assignment operators
     rational& operator+= (const rational& r);
     rational& operator-= (const rational& r);
     rational& operator*= (const rational& r);
     rational& operator/= (const rational& r);
 
     rational& operator+= (param_type i);
     rational& operator-= (param_type i);
     rational& operator*= (param_type i);
     rational& operator/= (param_type i);
 
     // Increment and decrement
     const rational& operator++();
     const rational& operator--();
 
     // Operator not
     bool operator!() const { return !num; }
 
     // Boolean conversion
     
 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
     // following, hence we selectively disable that option for the
     // offending memfun.
 #pragma parse_mfunc_templ off
 #endif
 
     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
 
 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
 #pragma parse_mfunc_templ reset
 #endif
 
     // Comparison operators
     bool operator< (const rational& r) const;
     bool operator== (const rational& r) const;
 
     bool operator< (param_type i) const;
     bool operator> (param_type i) const;
     bool operator== (param_type i) const;
 
 private:
     // Implementation - numerator and denominator (normalized).
     // Other possibilities - separate whole-part, or sign, fields?
     IntType num;
     IntType den;
 
     // Representation note: Fractions are kept in normalized form at all
     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
     // In particular, note that the implementation of abs() below relies
     // on den always being positive.
     bool test_invariant() const;
     void normalize();
 };
 
 // Assign in place
 template <typename IntType>
 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
 {
     num = n;
     den = d;
     normalize();
     return *this;
 }
 
 // Unary plus and minus
 template <typename IntType>
 inline rational<IntType> operator+ (const rational<IntType>& r)
 {
     return r;
 }
 
 template <typename IntType>
 inline rational<IntType> operator- (const rational<IntType>& r)
 {
     return rational<IntType>(-r.numerator(), r.denominator());
 }
 
 // Arithmetic assignment operators
 template <typename IntType>
 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
 {
     // This calculation avoids overflow, and minimises the number of expensive
     // calculations. Thanks to Nickolay Mladenov for this algorithm.
     //
     // Proof:
     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
     //
     // The result is (a*d1 + c*b1) / (b1*d1*g).
     // Now we have to normalize this ratio.
     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
     // But since gcd(a,b1)=1 we have h=1.
     // Similarly h|d1 leads to h=1.
     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
     // Which proves that instead of normalizing the result, it is better to
     // divide num and den by gcd((a*d1 + c*b1), g)
 
     // Protect against self-modification
     IntType r_num = r.num;
     IntType r_den = r.den;
 
     IntType g = math::gcd(den, r_den);
     den /= g;  // = b1 from the calculations above
     num = num * (r_den / g) + r_num * den;
     g = math::gcd(num, g);
     num /= g;
     den *= r_den/g;
 
     return *this;
 }
 
 template <typename IntType>
 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
 {
     // Protect against self-modification
     IntType r_num = r.num;
     IntType r_den = r.den;
 
     // This calculation avoids overflow, and minimises the number of expensive
     // calculations. It corresponds exactly to the += case above
     IntType g = math::gcd(den, r_den);
     den /= g;
     num = num * (r_den / g) - r_num * den;
     g = math::gcd(num, g);
     num /= g;
     den *= r_den/g;
 
     return *this;
 }
 
 template <typename IntType>
 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
 {
     // Protect against self-modification
     IntType r_num = r.num;
     IntType r_den = r.den;
 
     // Avoid overflow and preserve normalization
     IntType gcd1 = math::gcd(num, r_den);
     IntType gcd2 = math::gcd(r_num, den);
     num = (num/gcd1) * (r_num/gcd2);
     den = (den/gcd2) * (r_den/gcd1);
     return *this;
 }
 
 template <typename IntType>
 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
 {
     // Protect against self-modification
     IntType r_num = r.num;
     IntType r_den = r.den;
 
     // Avoid repeated construction
     IntType zero(0);
 
     // Trap division by zero
     if (r_num == zero)
         throw bad_rational();
     if (num == zero)
         return *this;
 
     // Avoid overflow and preserve normalization
     IntType gcd1 = math::gcd(num, r_num);
     IntType gcd2 = math::gcd(r_den, den);
     num = (num/gcd1) * (r_den/gcd2);
     den = (den/gcd2) * (r_num/gcd1);
 
     if (den < zero) {
         num = -num;
         den = -den;
     }
     return *this;
 }
 
 // Mixed-mode operators
 template <typename IntType>
 inline rational<IntType>&
 rational<IntType>::operator+= (param_type i)
 {
     return operator+= (rational<IntType>(i));
 }
 
 template <typename IntType>
 inline rational<IntType>&
 rational<IntType>::operator-= (param_type i)
 {
     return operator-= (rational<IntType>(i));
 }
 
 template <typename IntType>
 inline rational<IntType>&
 rational<IntType>::operator*= (param_type i)
 {
     return operator*= (rational<IntType>(i));
 }
 
 template <typename IntType>
 inline rational<IntType>&
 rational<IntType>::operator/= (param_type i)
 {
     return operator/= (rational<IntType>(i));
 }
 
 // Increment and decrement
 template <typename IntType>
 inline const rational<IntType>& rational<IntType>::operator++()
 {
     // This can never denormalise the fraction
     num += den;
     return *this;
 }
 
 template <typename IntType>
 inline const rational<IntType>& rational<IntType>::operator--()
 {
     // This can never denormalise the fraction
     num -= den;
     return *this;
 }
 
 // Comparison operators
 template <typename IntType>
 bool rational<IntType>::operator< (const rational<IntType>& r) const
 {
     // Avoid repeated construction
     int_type const  zero( 0 );
 
     // This should really be a class-wide invariant.  The reason for these
     // checks is that for 2's complement systems, INT_MIN has no corresponding
     // positive, so negating it during normalization keeps it INT_MIN, which
     // is bad for later calculations that assume a positive denominator.
     BOOST_ASSERT( this->den > zero );
     BOOST_ASSERT( r.den > zero );
 
     // Determine relative order by expanding each value to its simple continued
     // fraction representation using the Euclidian GCD algorithm.
     struct { int_type  n, d, q, r; }  ts = { this->num, this->den, this->num /
      this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
      r.num % r.den };
     unsigned  reverse = 0u;
 
     // Normalize negative moduli by repeatedly adding the (positive) denominator
     // and decrementing the quotient.  Later cycles should have all positive
     // values, so this only has to be done for the first cycle.  (The rules of
     // C++ require a nonnegative quotient & remainder for a nonnegative dividend
     // & positive divisor.)
     while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
     while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
 
     // Loop through and compare each variable's continued-fraction components
     while ( true )
     {
         // The quotients of the current cycle are the continued-fraction
         // components.  Comparing two c.f. is comparing their sequences,
         // stopping at the first difference.
         if ( ts.q != rs.q )
         {
             // Since reciprocation changes the relative order of two variables,
             // and c.f. use reciprocals, the less/greater-than test reverses
             // after each index.  (Start w/ non-reversed @ whole-number place.)
             return reverse ? ts.q > rs.q : ts.q < rs.q;
         }
 
         // Prepare the next cycle
         reverse ^= 1u;
 
         if ( (ts.r == zero) || (rs.r == zero) )
         {
             // At least one variable's c.f. expansion has ended
             break;
         }
 
         ts.n = ts.d;         ts.d = ts.r;
         ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
         rs.n = rs.d;         rs.d = rs.r;
         rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
     }
 
     // Compare infinity-valued components for otherwise equal sequences
     if ( ts.r == rs.r )
     {
         // Both remainders are zero, so the next (and subsequent) c.f.
         // components for both sequences are infinity.  Therefore, the sequences
         // and their corresponding values are equal.
         return false;
     }
     else
     {
 #ifdef BOOST_MSVC
 #pragma warning(push)
 #pragma warning(disable:4800)
 #endif
         // Exactly one of the remainders is zero, so all following c.f.
         // components of that variable are infinity, while the other variable
         // has a finite next c.f. component.  So that other variable has the
         // lesser value (modulo the reversal flag!).
         return ( ts.r != zero ) != static_cast<bool>( reverse );
 #ifdef BOOST_MSVC
 #pragma warning(pop)
 #endif
     }
 }
 
 template <typename IntType>
 bool rational<IntType>::operator< (param_type i) const
 {
     // Avoid repeated construction
     int_type const  zero( 0 );
 
     // Break value into mixed-fraction form, w/ always-nonnegative remainder
     BOOST_ASSERT( this->den > zero );
     int_type  q = this->num / this->den, r = this->num % this->den;
     while ( r < zero )  { r += this->den; --q; }
 
     // Compare with just the quotient, since the remainder always bumps the
     // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
     // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
     // q >= i + 1 > i; therefore n/d < i iff q < i.]
     return q < i;
 }
 
 template <typename IntType>
 bool rational<IntType>::operator> (param_type i) const
 {
     // Trap equality first
     if (num == i && den == IntType(1))
         return false;
 
     // Otherwise, we can use operator<
     return !operator<(i);
 }
 
 template <typename IntType>
 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
 {
     return ((num == r.num) && (den == r.den));
 }
 
 template <typename IntType>
 inline bool rational<IntType>::operator== (param_type i) const
 {
     return ((den == IntType(1)) && (num == i));
 }
 
 // Invariant check
 template <typename IntType>
 inline bool rational<IntType>::test_invariant() const
 {
     return ( this->den > int_type(0) ) && ( math::gcd(this->num, this->den) ==
      int_type(1) );
 }
 
 // Normalisation
 template <typename IntType>
 void rational<IntType>::normalize()
 {
     // Avoid repeated construction
     IntType zero(0);
 
     if (den == zero)
         throw bad_rational();
 
     // Handle the case of zero separately, to avoid division by zero
     if (num == zero) {
         den = IntType(1);
         return;
     }
 
     IntType g = math::gcd(num, den);
 
     num /= g;
     den /= g;
 
     // Ensure that the denominator is positive
     if (den < zero) {
         num = -num;
         den = -den;
     }
 
     BOOST_ASSERT( this->test_invariant() );
 }
 
 namespace detail {
 
     // A utility class to reset the format flags for an istream at end
     // of scope, even in case of exceptions
     struct resetter {
         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
         ~resetter() { is_.flags(f_); }
         std::istream& is_;
         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
     };
 
 }
 
 // Input and output
 template <typename IntType>
 std::istream& operator>> (std::istream& is, rational<IntType>& r)
 {
     IntType n = IntType(0), d = IntType(1);
     char c = 0;
     detail::resetter sentry(is);
 
     is >> n;
     c = is.get();
 
     if (c != '/')
         is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base
 
 #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
     is >> std::noskipws;
 #else
     is.unsetf(ios::skipws); // compiles, but seems to have no effect.
 #endif
     is >> d;
 
     if (is)
         r.assign(n, d);
 
     return is;
 }
 
 // Add manipulators for output format?
 template <typename IntType>
 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
 {
     os << r.numerator() << '/' << r.denominator();
     return os;
 }
 
 // Type conversion
 template <typename T, typename IntType>
 inline T rational_cast(
     const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
 {
     return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
 }
 
 // Do not use any abs() defined on IntType - it isn't worth it, given the
 // difficulties involved (Koenig lookup required, there may not *be* an abs()
 // defined, etc etc).
 template <typename IntType>
 inline rational<IntType> abs(const rational<IntType>& r)
 {
     if (r.numerator() >= IntType(0))
         return r;
 
     return rational<IntType>(-r.numerator(), r.denominator());
 }
 
 } // namespace boost
 
 #endif  // BOOST_RATIONAL_HPP