src/boost/multi_array.hpp
60c84217
 // Copyright 2002 The Trustees of Indiana University.
 
 // Use, modification and distribution is subject to the Boost Software 
 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
 // http://www.boost.org/LICENSE_1_0.txt)
 
 //  Boost.MultiArray Library
 //  Authors: Ronald Garcia
 //           Jeremy Siek
 //           Andrew Lumsdaine
 //  See http://www.boost.org/libs/multi_array for documentation.
 
 #ifndef BOOST_MULTI_ARRAY_RG071801_HPP
 #define BOOST_MULTI_ARRAY_RG071801_HPP
 
 //
 // multi_array.hpp - contains the multi_array class template
 // declaration and definition
 //
 
 #include "boost/multi_array/base.hpp"
 #include "boost/multi_array/collection_concept.hpp"
 #include "boost/multi_array/copy_array.hpp"
 #include "boost/multi_array/iterator.hpp"
 #include "boost/multi_array/subarray.hpp"
 #include "boost/multi_array/multi_array_ref.hpp"
 #include "boost/multi_array/algorithm.hpp"
 #include "boost/array.hpp"
 #include "boost/mpl/if.hpp"
 #include "boost/type_traits.hpp"
 #include <algorithm>
 #include <cstddef>
 #include <functional>
 #include <numeric>
 #include <vector>
 
 
 
 namespace boost {
   namespace detail {
     namespace multi_array {
 
       struct populate_index_ranges {
         multi_array_types::index_range
         // RG: underscore on extent_ to stifle strange MSVC warning.
         operator()(multi_array_types::index base,
                    multi_array_types::size_type extent_) {
           return multi_array_types::index_range(base,base+extent_);
         }
       };
 
 #ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
 //
 // Compilers that don't support partial ordering may need help to
 // disambiguate multi_array's templated constructors.  Even vc6/7 are
 // capable of some limited SFINAE, so we take the most-general version
 // out of the overload set with disable_multi_array_impl.
 //
 template <typename T, std::size_t NumDims, typename TPtr>
 char is_multi_array_impl_help(const_multi_array_view<T,NumDims,TPtr>&);
 template <typename T, std::size_t NumDims, typename TPtr>
 char is_multi_array_impl_help(const_sub_array<T,NumDims,TPtr>&);
 template <typename T, std::size_t NumDims, typename TPtr>
 char is_multi_array_impl_help(const_multi_array_ref<T,NumDims,TPtr>&);
 
 char ( &is_multi_array_impl_help(...) )[2];
 
 template <class T>
 struct is_multi_array_impl
 {
     static T x;
     BOOST_STATIC_CONSTANT(bool, value = sizeof((is_multi_array_impl_help)(x)) == 1);
 
   typedef mpl::bool_<value> type;
 };
 
 template <bool multi_array = false>
 struct disable_multi_array_impl_impl
 {
     typedef int type;
 };
 
 template <>
 struct disable_multi_array_impl_impl<true>
 {
     // forming a pointer to a reference triggers SFINAE
     typedef int& type; 
 };
 
 
 template <class T>
 struct disable_multi_array_impl :
   disable_multi_array_impl_impl<is_multi_array_impl<T>::value>
 { };
 
 
 template <>
 struct disable_multi_array_impl<int>
 {
   typedef int type;
 };
 
 
 #endif
 
     } //namespace multi_array
   } // namespace detail
 
 template<typename T, std::size_t NumDims,
   typename Allocator>
 class multi_array :
   public multi_array_ref<T,NumDims>
 {
   typedef multi_array_ref<T,NumDims> super_type;
 public:
   typedef typename super_type::value_type value_type;
   typedef typename super_type::reference reference;
   typedef typename super_type::const_reference const_reference;
   typedef typename super_type::iterator iterator;
   typedef typename super_type::const_iterator const_iterator;
   typedef typename super_type::reverse_iterator reverse_iterator;
   typedef typename super_type::const_reverse_iterator const_reverse_iterator;
   typedef typename super_type::element element;
   typedef typename super_type::size_type size_type;
   typedef typename super_type::difference_type difference_type;
   typedef typename super_type::index index;
   typedef typename super_type::extent_range extent_range;
 
 
   template <std::size_t NDims>
   struct const_array_view {
     typedef boost::detail::multi_array::const_multi_array_view<T,NDims> type;
   };
 
   template <std::size_t NDims>
   struct array_view {
     typedef boost::detail::multi_array::multi_array_view<T,NDims> type;
   };
 
   explicit multi_array() :
     super_type((T*)initial_base_,c_storage_order(),
                /*index_bases=*/0, /*extents=*/0) {
     allocate_space(); 
   }
 
   template <class ExtentList>
   explicit multi_array(
       ExtentList const& extents
 #ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
       , typename mpl::if_<
       detail::multi_array::is_multi_array_impl<ExtentList>,
       int&,int>::type* = 0
 #endif
       ) :
     super_type((T*)initial_base_,extents) {
     boost::function_requires<
       detail::multi_array::CollectionConcept<ExtentList> >();
     allocate_space();
   }
 
     
   template <class ExtentList>
   explicit multi_array(ExtentList const& extents,
                        const general_storage_order<NumDims>& so) :
     super_type((T*)initial_base_,extents,so) {
     boost::function_requires<
       detail::multi_array::CollectionConcept<ExtentList> >();
     allocate_space();
   }
 
   template <class ExtentList>
   explicit multi_array(ExtentList const& extents,
                        const general_storage_order<NumDims>& so,
                        Allocator const& alloc) :
     super_type((T*)initial_base_,extents,so), allocator_(alloc) {
     boost::function_requires<
       detail::multi_array::CollectionConcept<ExtentList> >();
     allocate_space();
   }
 
 
   explicit multi_array(const detail::multi_array
                        ::extent_gen<NumDims>& ranges) :
     super_type((T*)initial_base_,ranges) {
 
     allocate_space();
   }
 
 
   explicit multi_array(const detail::multi_array
                        ::extent_gen<NumDims>& ranges,
                        const general_storage_order<NumDims>& so) :
     super_type((T*)initial_base_,ranges,so) {
 
     allocate_space();
   }
 
 
   explicit multi_array(const detail::multi_array
                        ::extent_gen<NumDims>& ranges,
                        const general_storage_order<NumDims>& so,
                        Allocator const& alloc) :
     super_type((T*)initial_base_,ranges,so), allocator_(alloc) {
 
     allocate_space();
   }
 
   multi_array(const multi_array& rhs) :
   super_type(rhs), allocator_(rhs.allocator_) {
     allocate_space();
     boost::detail::multi_array::copy_n(rhs.base_,rhs.num_elements(),base_);
   }
 
 
   //
   // A multi_array is constructible from any multi_array_ref, subarray, or
   // array_view object.  The following constructors ensure that.
   //
 
   // Due to limited support for partial template ordering, 
   // MSVC 6&7 confuse the following with the most basic ExtentList 
   // constructor.
 #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
   template <typename OPtr>
   multi_array(const const_multi_array_ref<T,NumDims,OPtr>& rhs,
               const general_storage_order<NumDims>& so = c_storage_order())
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     // Warning! storage order may change, hence the following copy technique.
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   template <typename OPtr>
   multi_array(const detail::multi_array::
               const_sub_array<T,NumDims,OPtr>& rhs,
               const general_storage_order<NumDims>& so = c_storage_order())
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 
   template <typename OPtr>
   multi_array(const detail::multi_array::
               const_multi_array_view<T,NumDims,OPtr>& rhs,
               const general_storage_order<NumDims>& so = c_storage_order())
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 #else // BOOST_NO_FUNCTION_TEMPLATE_ORDERING
   // More limited support for MSVC
 
 
   multi_array(const const_multi_array_ref<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     // Warning! storage order may change, hence the following copy technique.
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const const_multi_array_ref<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     // Warning! storage order may change, hence the following copy technique.
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const detail::multi_array::
               const_sub_array<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const detail::multi_array::
               const_sub_array<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 
   multi_array(const detail::multi_array::
               const_multi_array_view<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const detail::multi_array::
               const_multi_array_view<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 #endif // !BOOST_NO_FUNCTION_TEMPLATE_ORDERING
 
   // Thes constructors are necessary because of more exact template matches.
   multi_array(const multi_array_ref<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     // Warning! storage order may change, hence the following copy technique.
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const multi_array_ref<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     // Warning! storage order may change, hence the following copy technique.
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 
   multi_array(const detail::multi_array::
               sub_array<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
   multi_array(const detail::multi_array::
               sub_array<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
 
 
   multi_array(const detail::multi_array::
               multi_array_view<T,NumDims>& rhs)
     : super_type(0,c_storage_order(),rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
     
   multi_array(const detail::multi_array::
               multi_array_view<T,NumDims>& rhs,
               const general_storage_order<NumDims>& so)
     : super_type(0,so,rhs.index_bases(),rhs.shape()) 
   {
     allocate_space();
     std::copy(rhs.begin(),rhs.end(),this->begin());
   }
     
   // Since assignment is a deep copy, multi_array_ref
   // contains all the necessary code.
   template <typename ConstMultiArray>
   multi_array& operator=(const ConstMultiArray& other) {
     super_type::operator=(other);
     return *this;
   }
 
   multi_array& operator=(const multi_array& other) {
     if (&other != this) {
       super_type::operator=(other);
     }
     return *this;
   }
 
 
   template <typename ExtentList>
   multi_array& resize(const ExtentList& extents) {
     boost::function_requires<
       detail::multi_array::CollectionConcept<ExtentList> >();
 
     typedef detail::multi_array::extent_gen<NumDims> gen_type;
     gen_type ranges;
 
     for (int i=0; i != NumDims; ++i) {
       typedef typename gen_type::range range_type;
       ranges.ranges_[i] = range_type(0,extents[i]);
     }
     
     return this->resize(ranges);
   }
 
 
 
   multi_array& resize(const detail::multi_array
                       ::extent_gen<NumDims>& ranges) {
 
 
     // build a multi_array with the specs given
     multi_array new_array(ranges,this->storage_order());
 
 
     // build a view of tmp with the minimum extents
 
     // Get the minimum extents of the arrays.
     boost::array<size_type,NumDims> min_extents;
 
     const size_type& (*min)(const size_type&, const size_type&) =
       std::min;
     std::transform(new_array.extent_list_.begin(),new_array.extent_list_.end(),
                    this->extent_list_.begin(),
                    min_extents.begin(),
                    min);
 
 
     // typedef boost::array<index,NumDims> index_list;
     // Build index_gen objects to create views with the same shape
 
     // these need to be separate to handle non-zero index bases
     typedef detail::multi_array::index_gen<NumDims,NumDims> index_gen;
     index_gen old_idxes;
     index_gen new_idxes;
 
     std::transform(new_array.index_base_list_.begin(),
                    new_array.index_base_list_.end(),
                    min_extents.begin(),new_idxes.ranges_.begin(),
                    detail::multi_array::populate_index_ranges());
 
     std::transform(this->index_base_list_.begin(),
                    this->index_base_list_.end(),
                    min_extents.begin(),old_idxes.ranges_.begin(),
                    detail::multi_array::populate_index_ranges());
 
     // Build same-shape views of the two arrays
     typename
       multi_array::BOOST_NESTED_TEMPLATE array_view<NumDims>::type view_old = (*this)[old_idxes];
     typename
       multi_array::BOOST_NESTED_TEMPLATE array_view<NumDims>::type view_new = new_array[new_idxes];
 
     // Set the right portion of the new array
     view_new = view_old;
 
     using std::swap;
     // Swap the internals of these arrays.
     swap(this->super_type::base_,new_array.super_type::base_);
     swap(this->storage_,new_array.storage_);
     swap(this->extent_list_,new_array.extent_list_);
     swap(this->stride_list_,new_array.stride_list_);
     swap(this->index_base_list_,new_array.index_base_list_);
     swap(this->origin_offset_,new_array.origin_offset_);
     swap(this->directional_offset_,new_array.directional_offset_);
     swap(this->num_elements_,new_array.num_elements_);
     swap(this->allocator_,new_array.allocator_);
     swap(this->base_,new_array.base_);
     swap(this->allocated_elements_,new_array.allocated_elements_);
 
     return *this;
   }
 
 
   ~multi_array() {
     deallocate_space();
   }
 
 private:
   void allocate_space() {
     typename Allocator::const_pointer no_hint=0;
     base_ = allocator_.allocate(this->num_elements(),no_hint);
     this->set_base_ptr(base_);
     allocated_elements_ = this->num_elements();
     std::uninitialized_fill_n(base_,allocated_elements_,T());
   }
 
   void deallocate_space() {
     if(base_) {
       for(T* i = base_; i != base_+allocated_elements_; ++i)
         allocator_.destroy(i);
       allocator_.deallocate(base_,allocated_elements_);
     }
   }
 
   typedef boost::array<size_type,NumDims> size_list;
   typedef boost::array<index,NumDims> index_list;
 
   Allocator allocator_;
   T* base_;
   size_type allocated_elements_;
   enum {initial_base_ = 0};
 };
 
 } // namespace boost
 
 #endif // BOOST_MULTI_ARRAY_RG071801_HPP