Name Mode Size
R 040000
data 040000
inst 040000
man 040000
tests 040000
vignettes 040000
.gitignore 100644 0 kb
DESCRIPTION 100644 1 kb
NAMESPACE 100644 2 kb
NEWS.md 100644 0 kb
README.md 100644 2 kb
README.md
# multiWGCNA: an R package for deep mining gene co-expression networks in multi-trait expression data The multiWGCNA R package builds on the existing weighted gene co-expression network analysis (WGCNA) package by extending workflows to expression data with two dimensions. multiWGCNA is especially useful for the study of disease-associated modules across time or space. For more information, please see the multiWGCNA paper available at https://doi.org/10.1186/s12859-023-05233-z. # Installation The multiWGCNA R package can be installed from Bioconductor like this: ``` if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("multiWGCNA") ``` The development version of multiWGCNA can be installed from GitHub like this: ``` if (!require("devtools", quietly = TRUE)) install.packages("devtools") devtools::install_github("fogellab/multiWGCNA") ``` # Vignettes We recommend running through both of the vignettes before applying multiWGCNA to your own data: * The autism_full_workflow.Rmd vignette provides a quick example of how to use multiWGCNA. * The astrocyte_map2.Rmd vignette provides a more in-depth tutorial discussing the preservation analyses from the manuscript and functions for visualization. # Citation To cite multiWGCNA in publications, please use: Tommasini, D, Fogel, BL (2023). multiWGCNA: an R package for deep mining gene co-expression networks in multi-trait expression data. BMC Bioinformatics, 24, 1:115. For LaTeX users, a BibTeX entry is available here: ``` @Article{, title = {multiWGCNA: an R package for deep mining gene co-expression networks in multi-trait expression data}, author = {Dario Tommasini and Brent L. Fogel}, journal = {BMC Bioinformatics}, year = {2023}, volume = {24}, number = {1}, pages = {115}, } ```