/* -*- mode: c; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */

/*********************************************************************
 * Clustal Omega - Multiple sequence alignment
 *
 * Copyright (C) 2010 University College Dublin
 *
 * Clustal-Omega is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This file is part of Clustal-Omega.
 *
 ********************************************************************/

/*
 * RCS $Id: hhhmm.h 165 2010-12-22 16:24:48Z fabian $
 */

// hhhmm.h


class HMM
{
 public:
  HMM(int maxseqdis=MAXSEQDIS, int maxres=/*MAXRES*/par.maxResLen);
  ~HMM();
  HMM& operator=(HMM&);
  
  int n_display;            // number of sequences stored for display of alignment (INCLUDING >ss_ and >cf_ sequences)
  int n_seqs;               // number of sequences read in (INCLUDING >ss_ and >cf_ sequences)
  char** sname;             // names of stored sequences 
  char** seq;               // residues of stored sequences (first at pos 1!)
  int ncons;                // index of consensus sequence
  int nfirst;               // index of first sequence (query sequence of HMM)
  int nss_dssp;             // index of seq[] with secondary structure by dssp
  int nsa_dssp;             // index of seq[] with solvent accessibility by dssp
  int nss_pred;             // index of seq[] with predicted secondary structure
  int nss_conf;             // index of seq[] with confidence values for secondary structure prediction
  
  int L;                    // length of HMM = number of match states; set in declaration of HMM object
  int N_in;                 // number of sequences in alignment
  int N_filtered;           // number of sequences after filtering
  float* Neff_M;            // Neff_M[i] = diversity of subalignment of seqs that have residue in col i
  float* Neff_I;            // Neff_I[i] = diversity of subalignment of seqs that have insert in col i
  float* Neff_D;            // Neff_D[i] = diversity of subalignment of seqs that have delete in col i
  float Neff_HMM;           // average number of Neff over total length of HMM
   
  char* longname;           // Full name of first sequence of original alignment (NAME field)
  char name[NAMELEN];       // HMM name = first word in longname in lower case
  char file[NAMELEN];       // Basename (with path, without extension) of alignment file that was used to construct the HMM
  char fam[NAMELEN];        // family ID (derived from name) (FAM field)
  char sfam[NAMELEN];       // superfamily ID (derived from name) 
  char fold[NAMELEN];       // fold ID (derived from name)
  char cl[NAMELEN];         // class ID (derived from name)

  float lamda, mu;          // coefficients for aa score distribution of HMM using parameters in 'Parameters par'
  bool has_pseudocounts;    // set to true if HMM contains pseudocounts

  // Make a flat copy of q 
  void FlatCopyTo(HMM& t);

  // Read an HMM from a HHsearch .hhm file and return 0 at end of file
  int Read(FILE* dbf, char* path=NULL);

  // Read an HMM from a HMMer .hmm file; return 0 at end of file
  int ReadHMMer(FILE* dbf, char* filestr=NULL);

  // Read an HMM from a HMMer3 .hmm file; return 0 at end of file                                                          
  int ReadHMMer3(FILE* dbf, char* filestr=NULL);

  // Add transition pseudocounts to HMM
  void AddTransitionPseudocounts(float gapd=par.gapd, float gape=par.gape, float gapf=par.gapf, float gapg=par.gapg, float gaph=par.gaph, float gapi=par.gapi, float gapb=par.gapb);

  // Use secondary structure-dependent gap penalties on top of the HMM transition penalties
  void UseSecStrucDependentGapPenalties();

  // Generate an amino acid frequency matrix g[][] with full pseudocount admixture (tau=1)
  void PreparePseudocounts();

  // Add amino acid pseudocounts to HMM: t.p[i][a] = (1-tau)*f[i][a] + tau*g[i][a]
  void AddAminoAcidPseudocounts(char pcm=par.pcm, float pca=par.pca, float pcb=par.pcb, float pcc=par.pcc);

  // Add no amino acid pseudocounts to HMM: copy  t.p[i][a] = f[i][a]
  void NoAminoAcidPseudocounts() {for(int i=1; i<=L; i++) for(int a=0; a<20; a++) p[i][a]=f[i][a];};

  // Factor Null model into HMM t
  void IncludeNullModelInHMM(HMM& q, HMM& t);
  
  // Write HMM to output file 
  void WriteToFile(char* outfile);

  // Insert calibration line 'EVD   lamda   mu      hashvalue' into HMM file
  void InsertCalibration(char* infile);

  // Write HMM to output file in HMMER format 
  void WriteToFileHMMER(char* outfile);

  // Transform log to lin transition probs
  void Log2LinTransitionProbs(float beta=1.0);
  
  // Set query columns in His-tags etc to Null model distribution
  void NeutralizeTags();
  
  // Calculate effective number of sequences using profiles INCLUDING pseudocounts
  float CalcNeff();

  // Calculate consensus of HMM (needed to merge HMMs later)
  void CalculateConsensus();

  // Store linear transition probabilities
  void StoreLinearTransitionProbs();

  // Initialize f[i][a] with query HMM
  void MergeQueryHMM(HMM& q, float wk[]);
  
  // Normalize probabilities in total merged super-HMM 
  void NormalizeHMMandTransitionsLin2Log();

  // Rescale rate matrices P[a][b], R[a][b] according to HMM av. aa composition in pav[a]
  void RescaleMatrix();

#ifdef CLUSTALO
  void ClobberGlobal(void);
  char cQT; /* query or template */
#endif

private:
  float** f;                // f[i][a] = prob of finding amino acid a in column i WITHOUT pseudocounts
  float** g;                // f[i][a] = prob of finding amino acid a in column i WITH pseudocounts
  float** p;                // p[i][a] = prob of finding amino acid a in column i WITH OPTIMUM pseudocounts
  float** tr;               // log2 of transition probabilities M2M M2I M2D I2M I2I D2M D2D M2M_GAPOPEN GAPOPEN GAPEXTD
/*   float** tr_lin;           // transition probs in log space */
  char trans_lin;           // transition probs are given in log or lin space? (0: p_tr  1: log(p_tr) 

  char* ss_dssp;            // secondary structure determined by dssp 0:-  1:H  2:E  3:C  4:S  5:T  6:G  7:B
  char* sa_dssp;            // solvent accessibility state determined by dssp 0:-  1:A (absolutely buried) 2:B  3:C  4:D  5:E (exposed)
  char* ss_pred;            // predicted secondary structure          0:-  1:H  2:E  3:C
  char* ss_conf;            // confidence value of prediction         0:-  1:0 ... 10:9
  char* Xcons;              // consensus sequence in internal representation (A=0 R=1 N=2 D=3 ...)
  float pav[NAA];           // pav[a] = average freq of amino acids in HMM (including subst matrix pseudocounts)
  float pnul[NAA];          // null model probabilities used in comparison (only set in template/db HMMs)
  int* l;                   // l[i] = pos. of j'th match state in aligment
/*   char trans_lin;           // transition probs are given in log or lin space? (0: p_tr  1: log(p_tr)  */

  // Utility for Read()
  int Warning(FILE* dbf, char line[], char name[])
    {
      if (v) cerr<<"\nWARNING: could not read line\n\'"<<line<<"\'\nin HMM "<<name<<" in "<<file<<"\n";
      while (fgetline(line,LINELEN,dbf) && !(line[0]=='/' && line[1]=='/'));
      if (line) return 2;  //return status: skip HMM
      return 0;            //return status: end of database file
    }

  friend class Hit;
  friend class Alignment;
  friend class HMMshadow;
};

class HMMshadow {

 public: 
    float *Neff_M;
    float *Neff_I;
    float *Neff_D;
    float **f;
    float **g;
    float **p;
    float **tr;
    float pav[20];
    
    void copyHMMtoShadow(const HMM &hmm) { 
        Neff_M = hmm.Neff_M;
        Neff_I = hmm.Neff_I;
        Neff_D = hmm.Neff_D;
        f  = hmm.f; 
        g  = hmm.g; 
        p  = hmm.p;
        tr = hmm.tr;
        memcpy(pav, hmm.pav, 20*sizeof(float));
    } 
    
    void copyShadowToHMM(const HMM &hmm, const hmm_light rShadow) {
        
        int i, j;
        
        for (i = 0; i < rShadow.L+1; i++){
            hmm.Neff_M[i] = rShadow.Neff_M[i];
            hmm.Neff_I[i] = rShadow.Neff_I[i];
            hmm.Neff_D[i] = rShadow.Neff_D[i];
            for (j = 0; j < 20; j++){
                hmm.f[i][j] = rShadow.f[i][j];
                hmm.g[i][j] = rShadow.g[i][j];
                hmm.p[i][j] = rShadow.p[i][j];
            }
            for (j = 0; j < 7; j++){
                hmm.tr[i][j] = rShadow.tr[i][j];
            }
            memcpy((void *)hmm.pav, rShadow.pav, 20*sizeof(float));
        }
    } /* this is the end of copyShadowToHMM() */

} /* class HMMshadow */;