src/ClustalOmega/src/hhalign/hhdecl-C.h
dafeef0b
 /* -*- mode: c; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
 
 /*********************************************************************
  * Clustal Omega - Multiple sequence alignment
  *
  * Copyright (C) 2010 University College Dublin
  *
  * Clustal-Omega is free software; you can redistribute it and/or
  * modify it under the terms of the GNU General Public License as
  * published by the Free Software Foundation; either version 2 of the
  * License, or (at your option) any later version.
  *
  * This file is part of Clustal-Omega.
  *
  ********************************************************************/
 
 /*
  * RCS $Id: hhdecl-C.h 227 2011-03-28 17:03:09Z fabian $
  */
 
 /////////////////////////////////////////////////////////////////////////////////////
 //// Constants
 /////////////////////////////////////////////////////////////////////////////////////
 
 const char VERSION_AND_DATE[]="version 1.5.1.3 (November 2008)";
 const char REFERENCE[]="Soding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005, 21, 951-960.\n";
 const char COPYRIGHT[]="(C) Johannes Soeding (see LICENSE file)\n";
 const int MAXSEQ=65535; //max number of sequences in input alignment (must be <~30000 on cluster nodes)
 #if 0
 const int MAXCOL=32765; //max number of residues in input files; must be <= LINELEN and >= MAXRES
 const int MAXRES=15002; //max number of columns in HMM; must be <= LINELEN
 #else
 const int MAXCOL=2/*131072*/; //max number of residues in input files; must be <= LINELEN and >= MAXRES
 const int MAXRES=1/*65536*/; //max number of columns in HMM; must be <= LINELEN
 #endif
 const int LINELEN=262144; //max length of line read in from input files; must be >= MAXCOL 
 const int MAXSEQDIS=3; //10238;//max number of sequences stored in 'hit' objects and displayed in output alignment 
 const int IDLEN=255;     //max length of scop hierarchy id and pdb-id
 const int DESCLEN=32765;//max length of sequence description (longname)
 const int NAMELEN=511;  //max length of file names etc.
 const int MAXOPT=127;   //Maximum number of options to be read in from .hhconfig or command line
 const int NAA=20;       //number of amino acids (0-19)
 const int NTRANS=10;    //number of transitions recorded in HMM (M2M,M2I,M2D,I2M,I2I,D2M,D2D,M2M_GAPOPEN,GAPOPEN,GAPEXTD)
 const int NCOLMIN=10;   //min number of cols in subalignment for calculating pos-specific weights w[k][i]
 const int ANY=20;       //number representing an X (any amino acid) internally
 const int GAP=21;       //number representing a gap internally 
 const int ENDGAP=22;    //Important to distinguish because end gaps do not contribute to tansition counts 
 const int HMMSCALE=1000;//Scaling number for log2-values in HMMs
 const int NFAMMAX=5119; //Size of hash for counting number of HMMs in each family
 const int MAXPROF=32766;//Maximum number of HMM scores for fitting EVD
 const float MAXENDGAPFRAC=0.1; //For weighting: include only columns into subalignment i that have a max fraction of seqs with endgap
 const float SMIN= 20.;  //Minimum score of hit needed to search for another repeat of same profile: p=exp(-(4-mu)/lamda)=0.01
 const float LAMDA=0.388; //lamda in score EVD used for -local mode in length correction: S = S-log(Lq*Lt)/LAMDA) 
 const float LAMDA_GLOB=0.42; //lamda in score EVD used for -global mode
 const float PMAX=1E-2;  //Maximum single-repeat p-value that can contribute to whole-protein p-value
 const float MINEVALEXCL=0.5; //above this E-value from first ML fit hits are not used for final ML fit of EVD
 const int SELFEXCL=3;   // exclude self-alignments with j-i<SELFEXCL
 //is now in defined in hhhalign_wrapper.c -- const float PLTY_GAPOPEN=6.0f; // for -qsc option (filter for min similarity to query): 6 bits to open gap
 //is now in defined in hhhalign_wrapper.c -- const float PLTY_GAPEXTD=1.0f; // for -qsc option (filter for min similarity to query): 1 bit to extend gap
 const int MINCOLS_REALIGN=6; // hits with MAC alignments with fewer matched columns will be deleted in hhsearch hitlist
 
 enum transitions {M2M,M2I,M2D,I2M,I2I,D2M,D2D,M2M_GAPOPEN,GAPOPEN,GAPEXTD}; // index for transitions within a HMM
 enum pair_states {STOP=0,SAME=1,GD=2,IM=3,DG=4,MI=5,MS=6,ML=7,SM=8,LM=9,MM=10}; 
 
 // const char aa[]="ARNDCQEGHILKMFPSTWYVX-";
 //Amino acids Sorted by alphabet     -> internal numbers a 
 //                0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 //                A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  W  Y  X
 const int s2a[]={ 0, 4, 3, 6,13, 7, 8, 9,11,10,12, 2,14, 5, 1,15,16,19,17,18,20};
 //Internal numbers a for amino acids -> amino acids Sorted by alphabet: 
 //                0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 //                A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  X
 const int a2s[]={ 0,14,11, 2, 1,13, 3, 5, 6, 7, 9, 8,10, 4,12,15,16,18,19,17,20};
 
 // Secondary structure
 const int NDSSP=8;      //number of different ss states determined by dssp: 0-7 (0: no state available)
 const int NSSPRED=4;    //number of different ss states predicted by psipred: 0-3 (0: no prediction availabe)
 const int MAXCF=11;     //number of different confidence values: 0-10 (0: no prediction availabe)
 const int NSA=7;        //number of classes relative solvent accesiblity (0:no coord,  1:<2%, 2:<14%, 3:<33%, 4:<55%, 5:>55%, 6:S-S bridge)
  
 /////////////////////////////////////////////////////////////////////////////////////
 /////////////////////////////////////////////////////////////////////////////////////
 
 // Input parameters
 class Parameters          // Parameters for gap penalties and pseudocounts
 {
 public:
   char** argv;            //command line parameters
   char argc;              //dimension of argv
 
   char infile[NAMELEN];   // input filename
   char outfile[NAMELEN];  // output filename
   char pairwisealisfile[NAMELEN]; // output filename with pairwise alignments
   char alnfile[NAMELEN];  // name of output alignment file in A3M format (for iterative search)
   char hhmfile[NAMELEN];  // name of output HHM file for (iterative search)
   char psifile[NAMELEN];  // name of output alignmen file in PSI-BLAST format (iterative search)
   char scorefile[NAMELEN];// table of scores etc for all HMMs in searched database
   char tfile[NAMELEN];    // template filename (in hhalign)
   char buffer[NAMELEN];   // buffer to write results for other programs into
   char pngfile[NAMELEN];  // png image file for dotplot
   char wfile[NAMELEN];    // weights file generated with hhformat
   char* blafile;          // output of 'blastpgp -m 8' with PSI-BLAST E-values for HHblast  
   char* dbfiles;          // database filenames, separated by colons
   char* exclstr;          // optional string containing list of excluded residues, e.g. '1-33,97-168'
   int aliwidth;           // number of characters per line in output alignments for HMM search
   char append;            // append to output file? (hhmake)
   float p;                // minimum probability for inclusion in hit list and alignments
   float E;                // maximum E-value for inclusion in hit list and alignment list
   float e;                // maximum E-value for inclusion in output alignment, output HMM, and PSI-BLAST checkpoint model
   int Z;                  // max number of lines in hit list
   int z;                  // min number of lines in hit list
   int B;                  // max number of lines in alignment list
   int b;                  // min number of lines in alignment list
   int showcons;           // 0: don't show consensus sequence in alignments  1:show
   int showdssp;           // 0: don't show consensus sequence in alignments  1:show
   int showpred;           // 0: don't show consensus sequence in alignments  1:show
   int nseqdis;          // maximum number of query or template sequences in output alignments
   char cons;              // if set to 1, include consensus as first representative sequence of HMM
   char mark;              // which sequences to mark for display in output alignments? 0: auto; 1:all
   char outformat;         // 0: hhr  1: FASTA  2:A2M   3:A3M 
   char mode;              // 
                           //0:MAC alignment, master-slave  1:MAC blending, master-slave  2:MAC alignment, combining
 
   int max_seqid;          // Maximum sequence identity with all other sequences in alignment
   int qid;                // Minimum sequence identity with query sequence (sequence 0)
   float qsc;              // Minimum score per column with query sequence (sequence 0)
   int coverage;           // Minimum coverage threshold
   int Ndiff;              // Pick Ndiff most different sequences that passed the other filter thresholds
   int coverage_core;      // Minimum coverage for sequences in core alignment
   float qsc_core;         // Minimum sequence identity with query for sequences in core alignment
   float coresc;           // Minimum score per column with core alignment (HMM)
 	
   int maxResLen;          /* length of longest sequence/profile, FS 2010-11-05 */
   int maxColCnt;          /* maximum number of columns in HMM, FS 2010-11-05 */
 
   int Mgaps;              // Maximum percentage of gaps for match states
   int M;                  // Match state assignment by  1:upper/lower case  2:percentage rule  3:marked sequence
   char matrix;            // Subst.matrix 0: Gonnet, 1: HSDM, 2: BLOSUM50
      
   char wg;                // 0: use local sequence weights   1: use local ones
   double *pdWg1;          /* seq weights 1st profile, derived from tree */
   double *pdWg2;          /* seq weights 2nd profile, derived from tree */
 
   char pcm;               // 0:no pseudocounts, 1:pos-specific pcs, 2:PSIBLAST pcs
   /* pseudo-count parameters for MAC*/
   float pca;              // Pseudocount matrix = (1-tau(i))*I + tau(i)*S
   float pcb;              // tau(i) = pca/(1 + ((Neff-1)/pcb)^pcc
   float pcc;              // 
   float pcw;              // Decrease pseudocounts for conserved columns 
 		     
   /* gap parameters for MAC*/
   float gapb;             // Diversity threshold for adding pseudocounts to transitions from M state
   float gapd;             // Gap open penalty factor for deletions
   float gape;             // Gap extend penalty: factor to multiply hmmer values (def=1)
   float gapf;             // factor for increasing/reducing the gap opening penalty for deletes
   float gapg;             // factor for increasing/reducing the gap opening penalty for inserts
   float gaph;             // factor for increasing/reducing the gap extension penalty for deletes
   float gapi;             // factor for increasing/reducing the gap extension penalty for inserts
   		      
   /* pseudo-count parameters for Viterbi, FS, r226->r227 */
   float pcaV;              // Pseudocount matrix = (1-tau(i))*I + tau(i)*S
   float pcbV;              // tau(i) = pca/(1 + ((Neff-1)/pcb)^pcc
   float pccV;              // 
   float pcwV;              // Decrease pseudocounts for conserved columns 
 		     
   /* gap parameters for Viterbi, FS, r226->r227 */
   float gapbV;             // Diversity threshold for adding pseudocounts to transitions from M state
   float gapdV;             // Gap open penalty factor for deletions
   float gapeV;             // Gap extend penalty: factor to multiply hmmer values (def=1)
   float gapfV;             // factor for increasing/reducing the gap opening penalty for deletes
   float gapgV;             // factor for increasing/reducing the gap opening penalty for inserts
   float gaphV;             // factor for increasing/reducing the gap extension penalty for deletes
   float gapiV;             // factor for increasing/reducing the gap extension penalty for inserts
   		      
   float egq;              // penalty for end gaps when query not fully covered
   float egt;              // penalty for end gaps when template not fully covered 
 
   float neffa;            // Coefficients to estimate Neff-dependent weights for HMM merging procedure
   float neffb;            // Coefficients to estimate Neff-dependent weights for HMM merging procedure
 		      
   char ssgap;             // 1: add secondary structure-dependent gap penalties  0:off
   float ssgapd;           // secondary structure-dependent gap-opening penalty (per residue)
   float ssgape;           // secondary structure-dependent gap-extension penalty (per residue)
   char ssgapi;            // max. number of inside-integer(ii); gap-open-penalty= -ii*ssgapd
 		      
   char ssm;               // SS comparison mode: 0:no ss scoring  1:ss scoring AFTER alignment  2:ss score in column score
   float ssw;              // SS weight as compared to column score
   float ssa;              // SS state evolution matrix M1 = (1-ssa)*I + ssa*M0
 		      
   char loc;               // 0: local alignment (wrt. query), 1: global alignement 
   char forward;           // 0:Viterbi algorithm  1:Forward algorithm  2: MAC
   char realign;           // realign database hits to be displayed with MAC algorithm
   char altali;            // find up to this many possibly overlapping alignments
   int columnscore;        // 0: no aa comp corr  1: 1/2(qav+tav) 2: template av freqs 3: query av freqs 4:...
   float corr;             // Weight of correlations between scores with |i-j|<=4
   float shift;            // Score offset for match-match states
   float mact;             // Score threshold (negative offset) in MAC alignment
 		       
   char calibrate;         // calibration of query HMM?  0:no, 1:yes (write lamda,mu into query profile)
   char calm;              // derive P-values from: 0:query calibration  1:template calibration  2:both
   int opt;                // for optimization: compare only every opt'th negative; 0: mode off
   int readdefaultsfile ;  // read defaults file ./.hhdefaults or HOME/.hhdefaults?
   int min_overlap;        // all cells of dyn. programming matrix with L_T-j+i or L_Q-i+j < min_overlap will be ignored
   int hitrank;            // rank of hit to be printed as a3m alignment
   char notags;            // neutralize His-tags, FLAG tags, C-myc tags?
   unsigned int maxdbstrlen; // maximum length of database string to be printed in 'Command' line of hhr file
 		       
   char trans;             // 0: normal pairwise scoring; 1:transitive scoring 
   float Emax_trans;       // max E-value for intermediate HMMs in transitive scoring (i.e. l is intermediate HMM if E_lq, E_lk <Emax_trans)
   float wtrans;           // Ztot[k] = Zq[k] + wtrans * (Zforward[k]+Zreverse[k])
 
 
   // SCRAP THE FOLLOWING VARIABLES?
 
   float wstruc;          // weight of structure scores
   char repmode;          // 1:repeat identification: multiple hits not treated as independent 0: repeat mode off
 
   // ...
   float gapOpening;  //instead of PTLY_GAPOPEN
   float gapExtension; //instead of PTLY_GAPEXTD
 
   int idummy;
   int jdummy;
   float fdummy;      
 };
 
 /////////////////////////////////////////////////////////////////////////////////////
 //// Global variable declarations
 /////////////////////////////////////////////////////////////////////////////////////
 
 char v=1;             // 1: show only warnings 2:verbose mode  
 Parameters par;
 char program_name[NAMELEN]; //name of program executed (e.g. hhmake of hhsearch)
 
 // substitution matrix flavours
 float P[21][21];      // P[a][b] = combined probability for a aligned to b
 float R[21][21];      // R[a][b]=P[a][b]/p[b]=P(a|b); precalculated for pseudocounts
 float Sim[21][21];    // Similarity matrix Sim[a][b]: how similar are a and b?
 float S[21][21];      // Substitution score matrix S[a][b] = log2(Pab/pa/pb)
 float pb[21];         // pb[a] = background amino acid probabilities for chosen substitution matrix
 float qav[21];        // qav[a] = background amino acid probabilities for query HMM (needed for rate matrix rescaling)
 
 // secondary structure matrices
 float S73[NDSSP][NSSPRED][MAXCF];           // P[A][B][cf]       =  log2 P(A,B,cf)/P(A)/P(B,cf)
 float S33[NSSPRED][MAXCF][NSSPRED][MAXCF];  // P[B][cf][B'][cf'] =  log2 sum_B' P(A,B',cf)/P(A)/P(B,cf) * P_b(B'|B)
 // float S77[NDSSP][DSSP];                  // P[A][B]           =  log2 P(A,B)/P(A)/P(B)