Name Mode Size
R 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 1 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 1 kb
NEWS 100644 5 kb 100644 3 kb
miRspongeR.Rproj 100644 0 kb
# miRspongeR R package # Introduction This package provides several functions to explore miRNA sponge (also called ceRNA or miRNA decoy) regulation from putative miRNA-target interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA sponge interactions, and an integrative method to integrate miRNA sponge interactions from different methods, as well as the functions to validate miRNA sponge interactions, and infer miRNA sponge modules, conduct enrichment analysis of miRNA sponge modules, and conduct survival analysis of miRNA sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA sponge interactions. In terms of sample-specific miRNA sponge interactions, it implements three similarity methods to construct sample-sample correlation network. # Installation ```{r echo=FALSE, results='hide', message=FALSE} if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("miRspongeR") ``` # A quick example to use miRspongeR package ```{r echo=FALSE, results='hide', message=FALSE} # Load the package library(miRspongeR) # Identifying miRNA sponge interactions using the miRHomology method miR2Target <- system.file("extdata", "miR2Target.csv", package="miRspongeR") miRTarget <- read.csv(miR2Target, header=TRUE, sep=",") miRHomologyceRInt <- spongeMethod(miRTarget, method = "miRHomology") # Validation of the identified miRNA sponge interactions Groundtruthcsv <- system.file("extdata", "Groundtruth.csv", package="miRspongeR") Groundtruth <- read.csv(Groundtruthcsv, header=TRUE, sep=",") spongenetwork_validated <- spongeValidate(miRHomologyceRInt[, 1:2], directed = FALSE, Groundtruth) # Module identification from miRNA sponge interaction network spongenetwork_Cluster <- netModule(miRHomologyceRInt[, 1:2], modulesize = 2) # Disease and functional enrichment analysis of miRNA sponge modules sponge_Module_DEA <- moduleDEA(spongenetwork_Cluster) sponge_Module_FEA <- moduleFEA(spongenetwork_Cluster) # Survival analysis of miRNA sponge modules ExpDatacsv <- system.file("extdata", "ExpData.csv", package="miRspongeR") ExpData <- read.csv(ExpDatacsv, header=TRUE, sep=",") SurvDatacsv <- system.file("extdata", "SurvData.csv", package="miRspongeR") SurvData <- read.csv(SurvDatacsv, header=TRUE, sep=",") sponge_Module_Survival <- moduleSurvival(spongenetwork_Cluster, ExpData, SurvData, devidePercentage=.5) ``` # License GPL-3