Name Mode Size
R 040000
data 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 3 kb
NEWS 100644 3 kb
README.md 100644 4 kb
miRSM.Rproj 100644 0 kb
README.md
# miRSM R package # Introduction This package provides several utility functions to study miRNA sponge or ceRNA modules at single-sample and multi-sample levels, including popular methods for inferring gene modules (candidate miRNA sponge or ceRNA modules), and two functions to identify miRNA sponge modules at single-sample and multi-sample levels, as well as several functions to conduct modular analysis of miRNA sponge modules. # Installation ```{r echo=FALSE, results='hide', message=FALSE} if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("miRSM") ``` # A quick example to use miRSM package ```{r echo=FALSE, results='hide', message=FALSE} # Load miRSM package suppressPackageStartupMessages(library(miRSM)) # Load BRCA sample data data(BRCASampleData) # Identifying gene co-expression modules using WGCNA modulegenes_WGCNA <- module_WGCNA(ceRExp[, seq_len(150)], mRExp[, seq_len(150)]) # Identifying miRNA sponge modules using sensitivity RV coefficient (SRVC) miRSM_WGCNA_SRVC <- miRSM(miRExp, ceRExp, mRExp, miRTarget, modulegenes_WGCNA, method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV") # Identifying sample-specific miRNA sponge modules nsamples <- 3 modulegenes_all <- module_igraph(ceRExp[, 151:300], mRExp[, 151:300]) modulegenes_exceptk <- lapply(seq(nsamples), function(i) module_WGCNA(ceRExp[-i, seq(150)], mRExp[-i, seq(150)])) miRSM_SRVC_all <- miRSM(miRExp, ceRExp[, 151:300], mRExp[, 151:300], miRTarget, modulegenes_all, method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV") miRSM_SRVC_exceptk <- lapply(seq(nsamples), function(i) miRSM(miRExp[-i, ], ceRExp[-i, seq(150)], mRExp[-i, seq(150)], miRTarget, modulegenes_exceptk[[i]], method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV")) Modulegenes_all <- miRSM_SRVC_all[[2]] Modulegenes_exceptk <- lapply(seq(nsamples), function(i) miRSM_SRVC_exceptk[[i]][[2]]) Modules_SS <- miRSM_SS(Modulegenes_all, Modulegenes_exceptk) # Functional analysis of miRNA sponge modules miRSM_WGCNA_SRVC_genes <- miRSM_WGCNA_SRVC[[2]] miRSM_WGCNA_SRVC_FEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type ="FEA") miRSM_WGCNA_SRVC_DEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type = "DEA") # Cancer enrichment analysis of miRNA sponge modules miRSM.CEA.pvalue <- module_CEA(ceRExp, mRExp, BRCA_genes, miRSM_WGCNA_SRVC_genes) # Validation of miRNA sponge interactions in miRNA sponge modules Groundtruthcsv <- system.file("extdata", "Groundtruth_high.csv", package="miRSM") Groundtruth <- read.csv(Groundtruthcsv, header=TRUE, sep=",") miRSM.Validate <- module_Validate(miRSM_WGCNA_SRVC_genes, Groundtruth) # Co-expression analysis of miRNA sponge modules miRSM_WGCNA_Coexpress <- module_Coexpress(ceRExp, mRExp, miRSM_WGCNA_SRVC_genes, resample = 10, method = "mean", test.method = "t.test") # Distribution analysis of sharing miRNAs miRSM_WGCNA_share_miRs <- share_miRs(miRExp, miRTarget, miRSM_WGCNA_SRVC_genes) miRSM_WGCNA_miRdistribute <- module_miRdistribute(miRSM_WGCNA_share_miRs) # Predicting miRNA-target interactions miRSM_WGCNA_miRtarget <- module_miRtarget(miRSM_WGCNA_share_miRs, miRSM_WGCNA_SRVC_genes) # Identifying miRNA sponge interactions miRSM_WGCNA_miRsponge <- module_miRsponge(miRSM_WGCNA_SRVC_genes) ``` # License GPL-3