Name Mode Size
..
calculate_chi.Rd 100644 1 kb
create_synthetic.Rd 100644 1 kb
cs_sigmoid.Rd 100644 0 kb
empirical_lambda.Rd 100644 1 kb
log_sum_exp.Rd 100644 0 kb
map_branch.Rd 100644 0 kb
mcmcify.Rd 100644 0 kb
mfa.Rd 100644 4 kb
plot_chi.Rd 100644 0 kb
plot_dropout_relationship.Rd 100644 1 kb
plot_mfa_autocorr.Rd 100644 1 kb
plot_mfa_trace.Rd 100644 0 kb
posterior.Rd 100644 1 kb
print.mfa.Rd 100644 0 kb
summary.mfa.Rd 100644 1 kb
to_ggmcmc.Rd 100644 0 kb
transient.Rd 100644 0 kb
README.md
## mfa - Bayesian inference of bifurcations in single-cell data `mfa` is an R package implementing Gibbs sampling for a Bayesian hierarchichal mixture of factor analysers for inference of bifurcations in single-cell data. [![Build Status](https://travis-ci.org/kieranrcampbell/mfa.svg?branch=master)](https://travis-ci.org/kieranrcampbell/mfa) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.345981.svg)](https://doi.org/10.5281/zenodo.345981) ### Installation `mfa` may be installed either via Bioconductor (coming soon) or Github: #### Installation from Bioconductor ```r if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("mfa") ``` #### Installation from Github ```r devtools::install_github("kieranrcampbell/mfa", build_vignettes = TRUE) ``` ### Usage For a cell-by-gene matrix of expression Y, MFA can be envoked via ```r m <- mfa(Y) ``` which will perform Gibbs sampling to infer pseudotimes, branch structure, and genes involved in the bifurcation. For full usage see the package vignette: ```r vignette('introduction_to_mfa') ``` ### Authors Kieran Campbell & Christopher Yau University of Oxford