#' Calculate the relative difference between iterations of the negative #' log-likelihoods. #' #' Maximum-likelihood estimates are approximated using the EM algorithm where #' we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the #' zero point mass as latent indicator variables. The log-likelihood in this #' extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data)$. #' #' #' @param nll Vector of size M with the current negative log-likelihoods. #' @param nllOld Vector of size M with the previous iterations negative #' log-likelihoods. #' @return Vector of size M of the relative differences between the previous #' and current iteration nll. #' @seealso \code{\link{fitZig}} getEpsilon <- function(nll, nllOld){ eps=(nllOld-nll)/nllOld ifelse(!is.finite(nllOld), Inf, eps) }