#' Wrapper to calculate Discovery Odds Ratios on feature values. #' #' This function returns a data frame of p-values, odds ratios, lower and upper #' confidence limits for every row of a matrix. The discovery odds ratio is calculated #' as using Fisher's exact test on actual counts. The test's hypothesis is whether #' or not the discovery of counts for a feature (of all counts) is found in greater proportion #' in a particular group. #' #' #' @param obj A MRexperiment object with a count matrix, or a simple count #' matrix. #' @param cl Group comparison #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param adjust.method Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param cores Number of cores to use. #' @param ... Extra options for makeCluster #' @return Matrix of odds ratios, p-values, lower and upper confidence intervals #' @seealso \code{\link{cumNorm}} \code{\link{fitZig}} \code{\link{fitPA}} \code{\link{fitMeta}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),] #' res = fitDO(lungTrim,pData(lungTrim)$SmokingStatus); #' head(res) #' fitDO<-function(obj,cl,norm=TRUE,log=TRUE,adjust.method='fdr',cores=1,...){ x = returnAppropriateObj(obj,norm,log) nrows= nrow(x); if(is.null(rownames(x))){rownames(x)=1:nrows} sumClass1 = round(sum(x[,cl==levels(cl)[1]])) sumClass2 = round(sum(x[,cl==levels(cl)[2]])) cores <- makeCluster(getOption("cl.cores", cores),...) res = parRapply(cl=cores,x,function(i){ tbl = table(1-i,cl) if(sum(dim(tbl))!=4){ tbl = array(0,dim=c(2,2)); tbl[1,1] = round(sum(i[cl==levels(cl)[1]])) tbl[1,2] = round(sum(i[cl==levels(cl)[2]])) tbl[2,1] = sumClass1-tbl[1,1] tbl[2,2] = sumClass2-tbl[1,2] } ft <- fisher.test(tbl,workspace=8e6,alternative="two.sided",conf.int=TRUE) cbind(p=ft$p.value,o=ft$estimate,cl=ft$conf.int[1],cu=ft$conf.int[2]) }) stopCluster(cores) nres = nrows*4 seqs = seq(1,nres,by=4) p = res[seqs] adjp = p.adjust(p,method=adjust.method) o = res[seqs+1] cl = res[seqs+2] cu = res[seqs+3] res = data.frame(cbind(o,cl,cu,p,adjp)) colnames(res) = c("oddsRatio","lower","upper","pvalues","adjPvalues") rownames(res) = rownames(x) return(res) }