#' Various statistics of the count data. #' #' A matrix of values for each sample. The matrix consists of sample ids, the #' sample scaling factor, quantile value, the number identified features, and library size (depth of coverage). #' #' #' @param obj A MRexperiment object with count data. #' @param p Quantile value to calculate the scaling factor and quantiles for #' the various samples. #' @param file Output file name. #' @return None. #' @seealso \code{\link{cumNorm}} \code{\link{quantile}} #' @examples #' #' # see vignette #' exportStats <-function(obj,p= cumNormStat(obj),file="~/Desktop/res.stats.tsv"){ xx=MRcounts(obj) xx[xx==0]=NA qs=colQuantiles(xx,probs=p,na.rm=TRUE) xx[xx>0] = 1; xx[is.na(xx)]=0 newMat <- array(NA,dim=c(5,ncol(xx)+1)); newMat[1,1] = "Subject" newMat[2,1] = "Scaling factor" newMat[3,1] = "Quantile value" newMat[4,1] = "Number of identified features" newMat[5,1] = "Library size" newMat[1,2:ncol(newMat)]<-sampleNames(obj); newMat[2,2:ncol(newMat)]<-unlist(normFactors(obj)); newMat[3,2:ncol(newMat)]<-qs; newMat[4,2:ncol(newMat)]<-colSums(xx); newMat[5,2:ncol(newMat)]<-unlist(libSize(obj)); write((newMat),file = file,sep = "\t",ncolumns = 5); }