#' Estimated effective samples per feature #' #' Calculates the number of estimated effective samples per feature from the output #' of a fitZig run. The estimated effective samples per feature is calculated as the #' sum_1^n (n = number of samples) 1-z_i where z_i is the posterior probability a feature #' belongs to the technical distribution. #' #' @param obj The output of fitZig run on a MRexperiment object. #' @return A list of the estimated effective samples per feature. #' @seealso \code{\link{fitZig}} \code{\link{MRcoefs}} \code{\link{MRfulltable}} #' calculateEffectiveSamples<-function(obj){ rowSums(1-obj$z) }