#' Cumulative normalization statistic. #' #' @param obj An eSet object. #' @param pFlag Whether or not to plot the reference. #' @param rel Relative difference of rel percent. #' @return P-value for which to cumulative normalize. #' #' @name cumNormStat #' @seealso \code{\link{fitZig}} \code{\link{cumNorm}} cumNormStat <- function(obj,pFlag = FALSE,rel=.1,qFlag = TRUE, ...){ mat = MRcounts(obj); smat = sapply(1:ncol(mat),function(i){sort(mat[,i],decreasing=FALSE)}) ref = rowMeans(smat); yy = mat; yy[yy==0]=NA; ncols = ncol(mat); refS = sort(ref); k = which(refS>0)[1] lo = (length(refS)-k+1) if(qFlag == TRUE){ diffr = sapply(1:ncols,function(i){ refS[k:length(refS)] - quantile(yy[,i],p=seq(0,1,length.out=lo),na.rm=TRUE) }) } if(qFlag == FALSE){ diffr = sapply(1:ncols,function(i){ refS[k:length(refS)] - approx(yy[,i],n=lo)$y }) } diffr2 = matrixStats::rowMedians(abs(diffr),na.rm=TRUE) if(pFlag ==TRUE){ plot(abs(diff(diffr2[diffr2>0]))/diffr2[diffr2>0][-1],type="h",ylab="Relative difference for reference",xaxt="n",...) abline(h=rel) axis(1,at=seq(0,length(diffr2),length.out=5),labels = seq(0,1,length.out=5)) } x = which(abs(diff(diffr2))/diffr2[-1]>rel)[1] / length(diffr2) obj@expSummary$cumNormStat = x; return(x) }