% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{predict_mini_batch} \alias{predict_mini_batch} \title{Predict_mini_batch} \usage{ predict_mini_batch(data, CENTROIDS) } \arguments{ \item{data}{matrix-like objectcontaining numeric or integer data (obseravtions in rows, variables in columns).} \item{CENTROIDS}{a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should be equal to the number of clusters and the columns should equal the columns of the data.} } \value{ it returns a vector with the clusters. } \description{ Prediction function for mini-batch k-means applied to matrix-like objects. } \details{ This function takes the data and the output centroids and returns the clusters. This implementation relies very heavily on the \code{\link[ClusterR]{MiniBatchKmeans}} implementation. We provide the ability to work with other matrix-like objects other than base matrices (e.g, DelayedMatrix and HDF5Matrix) through the \code{beachmat} library. } \examples{ data(iris) km = mini_batch(as.matrix(iris[,1:4]), clusters = 3, batch_size = 10, max_iters = 10) clusters = predict_mini_batch(as.matrix(iris[,1:4]), CENTROIDS = km$centroids) } \author{ Yuwei Ni }